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Abstract
The Java Virtual  Machine (JVM) has been widely adopted in part 
because of its classfile format, which is  portable, compact, modu-
lar, verifiable, and reasonably easy to work with.  However, it was 
designed for just one language—Java—and so when it is used to 
express programs in other source languages, there are often “pain 
points” which retard both development and execution.  The most 
salient pain points show up at a familiar place, the method call 
site.

To generalize method calls on the JVM, the JSR 292 Expert 
Group has  designed a new invokedynamic instruction that pro-
vides user-defined call site semantics.  In the chosen design, 
invokedynamic serves as a hinge-point between two coexisting 
kinds of intermediate language: bytecode containing dynamic call 
sites, and combinator graphs specifying call  targets.  A dynamic 
compiler can traverse both representations simultaneously, pro-
ducing optimized machine code which is the seamless union of 
both  kinds of input.  As a final twist, the user-defined linkage of a 
call site may change, allowing the code to adapt as  the application 
evolves over time.  The result  is  a system balancing the concise-
ness of bytecode with the dynamic flexibility of function pointers.

Categories and Subject Descriptors D.3.3 [Programming 
Languages]:  Language Constructs and Features – Procedures, 
functions, and subroutines, polymorphism, control structures; 
D.3.4 – Optimization, Code generation.

General Terms Performance, Standardization, Languages

Keywords Bytecode, combinator, method invocation, 
invokedynamic, dynamic compilation

1. Bytecode Preliminaries

The Java™  Virtual Machine specification [Lindholm99] defines a 
classfile format  which serves as an intermediate language.  As  
described in early  accounts [Gosling95], this format is a bytecode-
based intermediate language designed to be compact, amenable to 
both  interpretation and translation, portable, statically verifiable 
(rich in types), and symbolically linked (free of addresses or off-
sets).  These last two qualities allow JVM modules (classfiles and 
JAR files) to be safely and robustly composed.

The classfile format, along  with the rest of the Java technol-
ogy, has  been extraordinarily successful; by some metrics 
[TIOBE09, Ohloh09] Java has been the most or second-most 
popular programming language, in  a broad range of communities, 
for most of a decade.  It  is likely that a large fraction  of all in-
structions executed by computers worldwide have been specified 
via Java bytecode.

The symbolically resolved names that  occur within a class file 
are classes, methods, and fields.  The resolution of these names is 
governed by complex rules.  For example, class name resolution is 
partially programmable via class loader objects.  These rules  are 
based on  and designed for the Java language itself [Steele96], and 
are a fixed behavior of the JVM.

References to fields and methods are strongly typed, with no 
variance allowed between a definition and its uses.  That  is, 
matching is  exact, for both member names and type signatures.  
Member lookup and matching of names and types is performed 
once only as a symbolic reference is linked, and specifically  when 
it  is resolved ([Lindholm99] 5.4.3).  This happens before the first 
time a particular member reference instruction executes.

Every field or method reference starts with a scope type (a 
class or interface), and proceeds up the Java type hierarchy to  find 
the addressed member.  Java’s access  control  rules are also ap-
plied.  If the member is not statically defined and accessible 
among the supertypes of the initial scope, the instruction fails to 
link, and never executes.  There is no provision for fallback logic 
like the doesNotUnderstand: protocol defined in Smalltalk 
[Goldberg83].

Method invocation is the principal mechanism for composing 
software modules (classes, packages, applications) that  access 
each other within the JVM.  The four method invocation instruc-
tions in the JVM correspond directly  to different kinds of Java 
method calls.  All  of them consult a scope for a named method 
with a given type signature.  Figure 1 summarizes them.

Except for invokestatic, each invocation treats an extra 
leading argument as  the receiver object, and statically types it to 
the scope type.  The receiver, or any other reference argument, 
may have a dynamic type that is  a subtype of the static type used 
for linkage.  An invocation that performs dispatch does so only on 
the receiver’s class.  There is  no multiple dispatch [Musch08] in 
the JVM.  Overloaded  function calls  in Java are resolved at com-
pile time and appear to the JVM as having fixed type signatures.

As a final constraint, the names of types and members must 
avoid certain 7-bit ASCII characters, such as forward-slash, pe-
riod, and semicolon.  Schemes to relieve this minor restriction  
exist [Rose08], but are beyond the scope of this paper.

mnemonic byte scope type receiver? dispatch?

invokestatic B8 class no N/A

invokespecial B7 class yes no

invokevirtual B6 class yes yes

invokeinterface B9 interface yes yes

Figure 1. Summary of JVM invocation bytecodes.
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2. The Multi-Language JVM

These rules, while perfect for supporting Java programs, are a 
mixed blessing to implementors of other languages.  Before we 
discuss  difficulties, it is well to note that implementors  are drawn 
by  the well-known strengths of the JVM platform.  These include 
reflection over metadata, optimizing compilers, efficient garbage 
collection, scalable concurrency, wide distribution, and robust  
security.  Also, the JVM is  surrounded by a rich ecosystem of 
libraries, applications, tools, and communities.  A decade or more 
ago, language implementors often coded their own runtimes.  
Now many have chosen to reuse complete VMs like the JVM or 
Microsoft’s CLR [Meijer00].  In recent years, the choice to reuse 
the JVM has been made many times.  By one count [Tolksdorf09], 
the number of JVM languages is presently at 240.

The difficulties of adapting the JVM to languages other than 
Java have long been noted.  Architectural difficulties or “pain 
points” for language implementors can involve requirements for 
structured value types (specifically  as return values), open classes, 
parameterized types, method pointers, tail calls, or continuations 
of various species.  The Da Vinci  Machine project [DaVinci09] 
aims to investigate such pain points and create prototypes of well-
designed solutions.

2.1 Multi-Language Method Calls

Many pain points  appear as  language implementors attempt to 
match the method or function invocation rules of their languages 
to those of Java.  Let us examine this problem in detail.

A language-specific notion of method or function invocation 
can often be analyzed into a linkage from a method use (call  or 
invocation) to a method definition, specified in the following 
JVM-like terms:
• a method name (Nu for the use, Nd for the definition)
• a scope in which to seek the method (Su) or define it (Sd)
• zero or more argument types (Au(i), i <|Au(*)|; Ad(j), j <|Au(*)|)
• zero or more return value types (Ru(i), Rd(j))
• a symbolic method reference Mu = 〈Su, Nu, Au(*), Ru(*)〉
• access control contexts, if any (Cu, Cd, typically classes)
• access permission Pd ∈ {public, private, protected, package}
• a method definition Md consistent with the Ad(*) and Rd(*)

Let us also assume, for now, that there is  at most one return type, 
and that the argument and return types are all JVM references or 
one of the eight JVM primitive types.1  We will  also assume a 
classic pattern of control transfer consisting of a single call fol-
lowed by a single return or throw.2  Typically, Cu will be a class 
whose bytecode contains the reference Mu.

In these terms, languages often need some of the following  
degrees of freedom, beyond what Java and the JVM support:
a) Nu might differ from Nd (or Md might be nameless)
b) Nd might be a symbolic entity other than a Java identifier
c) Su might differ from, and not be a subtype of, Sd

d) Su and/or Sd might be something other than a class or interface
e) two types Au(i), Ad(i) or Ru(i), Rd(i) might differ pairwise

f) types may differ in number: |Au(*)| ≠ |Ad(*)| or |Ru(*)| ≠ |Rd(*)|
g) the class Cu might not have access permission to Pd in Cd

Examples requiring such extra flexibility are Scheme top-level 
bindings, Common Lisp packages, Smalltalk classes, JavaScript 
scopes, Groovy overloaded calls, Ruby optional arguments, or C# 
friend references, respectively.

Beyond these degrees  of freedom, linking a language-specific 
symbolic reference Mu to a desired target  method Md also requires 
more options than the JVM natively implements.  Any of the fol-
lowing situations may arise:
h) the linked-to entity Md might be an object instead of a method
i) the initial linkage to Md may require specialized logic
j) the call site may require occasional relinking to some Md′ ≠ Md

k) the call site may need to be reset to an unlinked state
l) the call site may need to perform language-specific dispatch
m) the call site may need to emulate a bytecode instruction
Usage examples are global names bound to  closures, any language 
with  complex global scoping rules, languages  with  mutable 
classes, reuse of a precompiled script, arithmetic on dynamically-
typed operands, and calls out to Java APIs, respectively.

Finally, the language may mandate conversions of arguments, 
return values, or exceptions.  If the conversions  cannot be pre-
compiled into  the call  site (e.g., because they happen after type 
tests), they must be somehow adjoined or “mixed into” Md.  Us-
age examples include conversions between numeric, sequence, or 
string formats, and wrapping or unwrapping of exceptions.

2.2 Reified Methods have Simulation Overheads

Since Java is a general-purpose language, these extra degrees of 
freedom or options can be simulated by a suitable object-based 
API, reifying Md as a method m on an object  s.  To emphasize the 
extra representational layer, we will call s  a method simulator  
object, and m a simulator method.

The call site information Mu may also need reification, in part 
or whole.  In  the latter case we call the resulting object c a call site 
simulator object.  Call sites containing language-specific linkage 
state or dispatch caches generally require such simulators.

In JRuby [Nutter09] s.m  is named DynamicMethod.call and 
c’s type is org.jruby.runtime.CallSite.  A detailed account 
is  [Lorimer09].  Clojure [Hickey09] uses the simulator method 
clojure.lang.IFn.invoke.  In Jython [Hugunin09] method 
simulation is done by the root type PyObject.  From the JVM’s 
o w n C o r e R e f l e c t i o n A P I , t h e s i m u l a t o r m e t h o d 
java.lang.reflect.Method.invoke is a building block for 
many language implementations.

When the method call  site and/or target method definition is 
reified as an explicit Java object, its  behavior becomes  malleable 
relative to hardwired JVM calls.  The explicit objects are coded to 
simulate not only the JVM’s built-in linkage and calling behav-
iors, but also language-specific extensions and special features.

Malleability can, however, come at  the cost of serious execu-
tion  overhead and complexity.  The problem is that simulators do 
not express, directly and unambiguously, the sort of method invo-
cation operations that the JVM is designed to  optimize.  Specifi-
cally, we can recognize the following pain points:
1. methods only: The JVM cannot  bind a call site directly to an 

arbitrary object Md, so indirection is needed, which requires 
extra bytecode and Java data structures.

2. non-constant loads: Extra indirections can defeat attempts by 
the JVM to predict and inline call targets.

1 Proposals to remove these restrictions, such as [Rose04], are 
beyond the scope of this paper.
2 Again, tail calls [Schwaig09], continuations [Stadler09], corou-
tines, etc., are a problem for another time.



3. constant type restrictions: The initial  reference s  or c of the 
indirection chain must be maintained as a static variable, 
thread-local, or hidden argument.  Alternatively, if s and c are 
shared constants (or m  is static), the system cannot use optimi-
zation techniques such as inline caches  (described in section 5 
below) which rely on per-call-site state.

4. polluted profiles: The simulation mechanism is usually fac-
tored such that one logical  method call  Mu requires several 
JVM-level method calls s.m → m1 →…  If this is so, some of 
the mi execute shared  code, through which the execution traces 
of many Mu must pass.  Aliasing many call traces onto one 
shared “call interpreter” routine (e.g., m1) can defeat attempts 
to profile the logical calls and predict ultimate targets.

5. failed inlining: Multiple-level method calls  may also  overtax 
“inlining budget” heuristics  in the compiler, thus causing logi-
cal call sites to be optimized much more poorly.

6. obscured optimizations: Extra indirections and method calls 
can obscure the shape of language-specific optimizations at 
the call site.  The language runtime may try to transform a call 
site to build in  a fast path, but it  will be wasted effort if the 
improvement is obscured in the shape of the executable code.

7. awkward code: If a dynamic compiler cannot inline enough 
of the logical call  site due to  any of the above reasons, it can-
not easily organize the machine code to enable the hardware 
(caches, pipelines, prefetch logic, etc.) to operate as designed.

8. simulator signatures: Simulated  calls usually drop some of 
the signature information, adapting 〈Au(*),Ru(*)〉 to a simplified 
signature 〈as(*),rs(*)〉for s.m.  Let us call these simplified sig-
natures simulator signatures.  For example, the as(1) might be 
widened to  Object, or converted from a primitive int to a 
boxed Integer.  This adds complexity to the system.3

9. representation shifts: Argument and return value conversions 
are required to match simulator signatures.  Basic conversions 
include casting, boxing, and “varargs” manipulations.  Such 
complexity can waste optimization work on simple data 
movement.   Language-specific conversions may also occur, 
but the ones blamable as  “waste” are those which express  the 
same logical value in multiple JVM-level representations.

10. rich target signatures: Even if the 〈Au(*), Ru(*)〉 are kept sim-
ple and aligned with 〈as(*),rs(*)〉, a call to a Md within a Java 
API requires conversions to match the 〈Ad(*), Rd(*)〉.  This can 
manifest as a need to generate thousands of “Java invokers” 
which adapt all possible Java Md to corresponding s.m calls.4

11. metadata constants: Metadata about the call site may need to 
be reified and conveyed to s.m.  This is most often the case 
with the name Nu, which usually appears as an extra argument.

12. call site identity: The creation of a call site simulator object c 
is  not controlled by the JVM.  This means that inlined or op-
timized copies of a single logical  call site will share a common 
simulator c, even when it would be profitable to split c into 
multiple copies  cʹ′, cʺ″, and so  on.  JVMs which use inline 
caches for native invocations rely on the ability to split  native 
call site states in this way.

13. nonstandard infrastructure: The reification and simulation 
techniques invented by language implementors occur in pro-
fuse, even dizzying variety.  This variety makes  it unlikely that 
the JVM will reliably recognize them as intended, or that JVM 
vendors will invest serious effort in optimizing them.

3. Simulators Revisited: invokedynamic

A new invocation mode, embodied by the invokedynamic byte-
code instruction, is  now being defined for the JVM to address the 
pain points described in the previous section.  The Java Commu-
nity  Process, the body which  oversees Java-related standards, has 
chartered the JSR 292 Expert Group to design this instruction.  
The multi-year design effort has  led the JVM into new territory.  
Beyond our initial expectations, the creation of the new invocation 
mode has  also forced the creation of a new, more direct, form of 
method simulator object called a method handle.  In a nutshell, 
function pointers have arrived in the Java virtual machine.

First let us  describe invokedynamic.  It is a 5-byte instruction 
similar to  invokeinterface, but it has no built-in  scope, re-
ceiver, or dispatch behavior.  Figure 2 is the final  line of the table 
in Figure 1.

Because the new instruction lacks a scope type Su, its symbolic 
reference is  limited to a simple name-and-type descriptor Du = 
〈Nu, Au(*), Ru(*)〉.  The reference occupies two bytes.  The final  two 
bytes of the instruction format  are required to be zero; they are 
reserved for future use.  An instance of an invokedynamic in-
struction is called a dynamic call site.

Like all invoke instructions, invokedynamic can be linked 
lazily, as late as the first execution of each dynamic call site.  The 
JVM consults a locally defined bootstrap method to reify the call 
site as a simulator object c (see next subsection).  This  object c is 
then associated with the dynamic call  site.  The association is  
persistent within the JVM, until  unlinking is requested.  The call 
then determines its target Md simply by picking up a method han-
dle s from a field of c, and running a simulator method s.m.

The dynamic call site can be executed any number of times.  
The language runtime is free to manage the call site by updating 
the target s from time to time, and/or unlinking c to force recrea-
tion of a new call site simulator (re-reification, as it were).

In general, the method handle s may be viewed as the root of a 
small graph  of combinators  whose leaves are direct  references to 
other bytecoded methods.  We will examine the details of method 
handle structure in section 4.

Because c is persistent, and its  target s is  usually stable, a JVM 
dynamic compiler can elect to constant-fold  the values of c and s, 
and inline any code or executable logic that s refers to.  Before we 
look  more closely at this inlining process, let’s  fill  in more details 
about the reified call site c.

3.1 Bootstrapping Dynamic Call Sites

Before an unlinked dynamic call site is executed, the JVM calls 
the site’s bootstrap method.  Each class Cu containing dynamic 
call sites registers its  own bootstrap method by calling a system 
method from within the class initializer.  A bytecode compiler 

mnemonic byte scope type receiver? dispatch?

invokedynamic BA none N/A N/A

Figure 2. Summary of invokedynamic bytecode.

3 In the Core Reflection API, the simulation signature 〈as(*),rs(*)〉 
is always 〈Object[], Object〉.  JRuby has about 8 simulator 
signatures, and Clojure has about 21.
4 In HotSpot, reflection is currently implemented like this, with a 
bytecoded invoker generated on demand for each method.



which generates invokedynamic instructions is responsible for 
generating code to register a bootstrap method for each such Cu.

Callee methods Md are not yet determined at link time, and 
thus  have no effect on bootstrapping.  Any stacked arguments are 
also ignored during linking.  No receiver argument is distin-
guished.  Bootstrapping is thus totally unlike Smalltalk’s 
perform: or doesNotUnderstand: protocols.

The bootstrap method is passed parameters identifying all the 
statically determined symbolic information  in the call site, spe-
cifically Cu and Du = 〈Nu, Au(*), Ru(*)〉.  The name Nu can be an  
arbitrary string, subject only to the JVM’s rules for method name 
formation.  The JVM never interprets  the contents of this  string, 
so  language runtimes may use it for any purpose to help determine 
the intended target method Md, providing generalizations (b) and 
(i) in section 2.1 above.  In particular, part of this  string is some-
times used  to  encode a logical  lookup scope Sd, providing a path 
to generalizations (c) and (d) in section 2.1 above.

The bootstrap method creates a call  site object  c and returns it 
to  the JVM.  The bootstrap method may be viewed as a call site 
factory.  The object c must be a java.dyn.CallSite or a sub-
class thereof.  The subclass may be a user-defined class that  em-
bodies language-specific behavior for processing the call.  The 
JVM persistently associates  c with the specific invokedynamic 
instruction that required the bootstrap, until and unless  it is un-
linked by a request from the language runtime.

Further interactions with the JVM at that dynamic call  site are 
mediated through the call  site object.  Bootstrapping provides the 
“hook” for language-specific logic to set up the call site, but af-
terwards all calls will run by a more direct path, described next.

3.2 Making the Call

When a dynamic call site is executed (after it is  linked), the JVM 
extracts from the call site object c a target method reference s.  
This reference is a method handle, which we will describe in de-
tail in section 4.  In the reference implementation, s is loaded from 
a private field named CallSite.target.  The key point is  that  s 
has the potential to refer directly to any JVM method whatever.  

The JVM transfers control directly from the dynamic call site 
to  the simulation method s.m, which is named invokeExact.  
The simulation method may jump immediately to an ultimate 
target method Md or it may first perform argument transformations 
necessary to adapt  to Ad(i).  This flexibility in method handles  
provides generalizations (e) and (f) in section 2.1 above.

Because s is  intrinsically anonymous, its ultimate target  Md can 
have a name Nd that is unrelated to the name Nu in the dynamic 
call site.  This provides generalization (a) in section 2.1 above.

3.3 Static Type Checking, Correct by Construction

The static types Au(i) of the outgoing stacked arguments and  
incoming return value Ru(i) must  pairwise agree exactly with the 
static types of the stacked parameters as(i) accepted by the method 
handle and return values rs(i) produced by it.  Specifically, the 
method type signatures used by the JVM must match between the 
dynamic call site and  the simulator method.  This allows the JVM 
to neglect all data conversions when calling the method handle.

The alert  reader will be wondering how a method handle can 
declare an invokeExact method for every signature.  This will 
be explained below; it is enough to say here that all possible JVM 
signatures, with and without primitive types, are supported by 
both dynamic call sites and by method handle entry points.

The exact match of the method handle’s signature to the call 
site is assured as an  invariant on the CallSite object c, so the 
JVM does  not  need to check signatures on every dynamic invoca-
tion.  Any attempt to create a call site with a mismatched target 

type will cause a linkage failure error.  The effect  on global type 
integrity is as if the JVM verifier checks the method signature at a 
dynamic call site when its initial  target  method s  is specified, and 
also whenever (if ever) it is later relinked to another target sʹ′.

3.4 Dynamically Changing the Call

A dynamic call site may have its target  updated after bootstrap-
ping.  The CallSite API methods getTarget and setTarget 
are used to manage the target.  The allowed side effects are care-
fully limited to preserve type correctness.  The new target  must 
have the same type, or an exception is thrown and the call site is 
left unchanged.  This mutability provides generalization (j) in  
section 2.1  above, and allows dynamic call sites to respond 
quickly to changes in application configuration.

More crucially, a language runtime may modify a call site in 
response to  observed operand types in order to optimize it locally.  
As section 5 below explains, the classic inline cache optimization 
keeps track of operand types at a single call site, and reconfigures 
it  over time into neutral, monomorphic, and megamorphic states, 
responding to the needs of the application.  Mutable call sites  
allow language runtimes to compose their own inline caches.  
Also, many JVM implementations already use inline caches inter-
nally to optimize invokevirtual and invokeinterface.  In 
those JVMs, invokedynamic can be supported by some of the 
same infrastructure that underlies the older instructions.

Mutable calls  have tricky interactions with the Java memory 
model.  Within the same thread, the next call after a use of set-
Target will observe the new target.  Other threads may observe 
the new target later, because a call site’s target behaves, with re-
spect to global memory, like a regular, non-volatile heap variable.

Modern JVMs generate optimized code concurrently with  
application execution.  An optimized version of a dynamic call 
site might  inline all the way through the target method handle and 
into  the ultimate target method Md.  Changing the target method 
handle might cause such code to be patched or discarded.

Clearly if this happens many times at  one dynamic call site, the 
JVM’s  heuristics should identify the call site as megamutable, and 
generate target method linkage code which is slower, more decou-
pled, and more general.

There is a second possible state change on dynamic call sites, 
and that is  to discard them by marking them unlinked.  This forces 
a new bootstrap cycle on the next execution of the instruction.  
Unlinking operations  are strongly serialized across the whole 
JVM.  They are supposed to be rare, and JVMs may not optimize 
such state transitions  well, but if there is a problem with inter-
thread latency, unlinking is a “big hammer” for resetting  call sites.  
With this fallback, the normal case code for invokedynamic can 
avoid any need for volatile memory references.

No other changes are possible to linked call  sites or their target 
method handles.  In particular, method handles are pure values, 
whose structure cannot be changed after creation.  This is why the 
compiler will be able to inline them as well as it inlines bytecode.

3.5 Summary of invokedynamic

The design just sketched is complete in outline.  Here are the key 
principles we have followed:
• Provide built-in simulator types for call sites and methods.
• Make the simulators be as similar as possible to native call 

sites and methods, especially in performance characteristics.
• Try to keep language logic on a par with JVM linkage logic.
• Reify the language logic, but keep it out of the fast path.
• Support all  JVM method signatures, not just a “dynamic” sub-

set.  This feature may be called signature polymorphism.



4. Method Handles

So far we have been vague about the structure of method handles.  
In fact, before JSR 292, Java did not  provide a data structure 
which corresponds to a direct reference to an arbitrary method.  In 
order to design invokedynamic, however, it became clear that 
we needed a data structure which can answer the question, “to 
what target is this dynamic call site bound?”

The closest pre-existing candidate might  have been Method 
from the Core Reflection API, but the reflective invoke method 
has very high simulation overheads, such as a full access permis-
sion  check on every method call.  Reflective methods are also 
symbol table entries, since they supply a full account of annota-
tions, generic types, and throws.  All that structure would be ex-
pensive overhead to dynamic call  sites, where the only thing that 
matters is fast invocation through function pointers.

Therefore, the target of a dynamic call  site is  described with a 
new class, java.dyn.MethodHandle.

The design principles for method handles complement those 
for invokedynamic.  The basic idea is  to supply “JVM plumbing 
fittings” in enough variety that dynamic call  sites can serve as 
flexible connection points between callers  and callees.  Here are 
the specific principles:
• Provide direct invocation of JVM methods.
• Do not  hardwire functions proper to language logic, such as 

name lookup, access checking, exception transformation, etc.
• Allow calls to all JVM methods, including private ones.
• Be polymorphic across all JVM signatures.
• Provide uniform access to  basic JVM operations, including the 

invoke instructions.
• Support function composition, in the mathematical sense.
• Support argument adaptation via casting, boxing, etc.
• Support partial argument application, as for closures.

Every method handle has a specific type, a signature under 
which its invokeExact method can be invoked.  If bytecode 
stacks arguments and attempts to call invokeExact under a dif-
ferent signature, an exception is thrown, as section 4.2 describes.

This type can be queried by the type method.  The result is  an 
instance of MethodType, an immutable value encoding a series of 
argument types  and zero  or one return types.  Other than  a type 
and an invocation point, a method handle’s structure is opaque.

4.1 Direct Method Handles

The simplest form of method handle is the direct method handle, 
which is a direct reference to a Java method.  Invoking a direct 
method handle is equivalent  to invoking the method it points to.  
Here is a simple example which calls System.out.println:

Several  things happen in  this example.  The class Cu will both 
create and call a method handle object.  First, the lookup call  
performs an access check on Cu (via a stack walk) and builds a 
capability object of type MethodHandles.Lookup, which repre-

MethodHandle println = MethodHandles.lookup()
    .findVirtual(PrintStream.class,
      "println", MethodHandles.methodType(
      void.class, String.class));
println.<void>invokeExact(
    System.out, "hello, world");

Figure 3. Creating and using a direct method handle.

sents the permissions of Cu.  This step  is typically done once per 
class, storing the Lookup object in a private static final.

Next, a call to a factory method obtains a MethodType repre-
senting a signature taking a string argument and returning no 
value. 

Finally Lookup.findVirtual verifies that PrintStream 
contains a println method of the required signature and creates 
a method handle for it.  Because the target method is virtual, the 
handle takes an extra leading argument for the receiver.  It  is of 
type PrintStream, as Figure 4 shows.

Like invokedynamic, and unlike Core Reflection, method 
handles do not treat receivers specially.  When a receiver is pre-
sent, it is  simply the first argument.  This  leading receiver argu-
ment appears like any other argument in the method handle’s type.

Thus, the println handle, viewed as a simulator, has a sig-
nature 〈as(0),as(1),rs(*)〉 of 〈PrintStream, String, void〉, which 
matches println’s entry point signature 〈Ad(0), Ad(1), Rd(*)〉.

The odd-looking type parameter <void> in the invokeExact 
call is a proposed extension to the Java language.  This parameter, 
plus  the static types of the arguments, determines the simulator 
signature as it appears in the bytecode.

Method access checks are based on a method handle’s creator, 
not its caller.  In the example above, there is just one class, but if 
the creating class Cc differs  from the calling class  Cu, then any  
access checks  on the method are done relative to Cc, not Cu.  This 
is  different from the Core Reflection API, which may reflect  a 
private method, via Class.getDeclaredMethods, from any 
class Cc, but on every call performs an access check against every 
Cu.  Of course, doing so slows down reflective invocation.

More precisely, a class Cc can form a method handle on any 
method it is allowed to call, specifically including any of its own 
private methods (Cc = Cd) and methods in  the same inner class 
scope (Cc, Cd contained in a common package member).  It is  
assumed that Cc will share such private handles only with classes 
Cu that  it trusts enough to call the methods.  In effect, creator-
based access checks allow Cc to begin a call that some combinator 
Cu will later finish.  This supports generalization (g) in section 2.1.

Direct method handles can emulate all the invoke bytecode 
instructions, plus reflective calls.  The distinctions are implied via 
the Lookup method as follows:
• invokestatic is emulated via Lookup.findStatic
• invokespecial via Lookup.findSpecial
• invokevirtual via Lookup.findVirtual
• invokeinterface also via Lookup.findVirtual
• reflect.Method.invoke via Lookup.unreflect

Note that two direct method  handles can refer to the same 
method but differ in their behavior, in that one performs receiver-
based dispatch on its first argument, while the other does not.  The 
first case is far more usual.  See generalization (m) above.

As with the actual invokespecial instruction, the findSpe-
cial operation requires  extra permission checks.  This  feature 
allows dynamic languages to extend inherited Java methods as if 
via the “super” syntax.

MethodType mt = println.type();
assert mt.parameterType(0)==PrintStream.class;
assert mt.parameterType(1)==String.class;
assert mt.returnType()==void.class;

Figure 4. Method handle type, with inserted receiver argument.



4.2 Invoking Method Handles

Every method handle’s principal entry point is invokeExact, a 
public abstract  method.  Uniquely, the signature of this method 
varies from method handle to  method handle, but always corre-
sponds exactly to the method handle’s own type.

The bytecode to call  this method is familiar.  The method han-
dle is stacked, and becomes the receiver of an invokevirtual 
instruction of MethodHandle.invokeExact.  Zero or more 
additional arguments are stacked, and the JVM verifier ensures 
that they are consistent with the instruction’s method signature.  
This signature must also exactly match the method handle’s own 
type.  If this match fails, the JVM throws an unchecked exception 
named WrongMethodTypeException.  No conversions occur.5

The current JSR 292 draft has another invocation mode for 
method handles which  includes argument and return type conver-
sions.  It appears as another virtual  method beside invokeExact, 
named invokeGeneric.  The two modes are distinguished as  
exact invocation  versus generic invocation.  For any given method 
handle, invokeGeneric may be invoked under exactly the same 
signature as invokeExact, with the same effect.  However, if the 
calling signature 〈Au(*), Ru(*)〉 differs from the method handle’s 
simulation signature 〈as(*),rs(*)〉 the JVM will  make up the differ-
ence between signatures  (perhaps with extra execution cost), by 
applying cast, box, and unbox operations as needed.  The rules  for 
doing this are beyond the scope of this paper.

Generic invocation makes method handles easier to use.  With 
only  exact invocation, method handles could not conform to the 
usual variance rules for static typing of functions, and thus  could 
not represent function pointers in many languages.

4.3 Adapter Method Handles

A method handle m of type t can be adapted to a new method type 
tʹ′ by  creating an adapter method handle, a wrapper a  of the de-
sired new type, which delegates to the original target m.

If t and tʹ′ have the same arity, the library  method 
MethodHandles.convertArguments accepts m and t and  
returns such an adapter a.  As one might expect, an exact invoca-
tion  of a under the signature of tʹ′ is equivalent  to a generic invo-
cation of m, also under tʹ′.  This library  method can be thought of 
as a sort of “coping combinator”, for dealing with the wide variety 
of method type signatures  the JVM offers.  In particular, it can 
represent any method handle as a new method handle that oper-
ates only on Object arguments and return values.

It has been pointed out [Öhrström09] that if there were no  
exact invocation mode, and method handles were to support only 
generic invocation, there would be no need for convertArgu-
ments; certain other simplifications would also become possible.  
The rejoinder to this is that on-the-fly argument conversion is not 
a feature of native JVM method calls, and so should  be an op-
tional feature of method handles.  Such conversions are very use-
ful at times.  Because there is  a choice of modes, programmers 
can elect at other times to avoid conversion costs.

Other argument list adaptations are possible, to reorder, dupli-
cate, drop, collect, and spread arguments.  Adapters  can also apply 
user-defined conversions to arguments.  All  adapters are immuta-

ble and opaque.  Figure 5 is  a summary of the standard adapter 
combinators provided in the JSR 292 draft design.

The last two, “filter” and “fold”, compose two or more method 
handles in useful patterns.  They are general  mathematical func-
tion compositions but are “adapters” only when regarded as such.

4.4 Bound Method Handles

If arguments can be dropped, they can also be inserted; this  is 
done by so-called bound method handles.  A bound method handle 
b embodies the partial application of an argument  value k to a 
target method handle h.

For example, if h  is a direct handle to a virtual method m, it 
can be bound to a precomputed receiver k, producing a wrapper b 
that retains both k and m.  Optimization may pre-compute virtual 
or interface dispatch logic.  Every invocation of b  accepts the non-
receiver arguments x(*), stacks k before the other arguments, and 
executes k.m(x(*)).

The bound handle b is immutable and opaque.  The values k 
and h cannot be queried or changed.  Whether b  retains a refer-
ence to the reference h is an implementation decision.

For example, the handle println mentioned above can be 
bound to the current value of System.out as  shown in Figure 6.  
The resulting bound handle will  accept a single String argument, 
and print it to the bound output stream.

Bound method handles support generalization (h) in section 
2.1 above, and can be used to implement curried functions and 
closures.  With closures, care must be taken to properly display 
mutable variables  to the target method.  In this example, if the 
value of System.out is  changed, the bound method handle can-
not track this change.  Curried functions are a simpler story: The 
bound method handle represents the intermediate state where the 
function has received its first argument.

combinator argument transformation

convertArguments pairwise cast, (un)box, pad/truncate

dropArguments ignore (N consecutive)

insertArguments pre-apply (N consecutive)

permuteArguments reorder (also, drop and/or duplicate)

collectArguments collect N trailing (enter varargs)

spreadArguments spread N trailing (exit varargs)

filterArguments unary compose: h(f(x), g(y)…, u…)

foldArguments adjoin: h(f(x, y…), x, y…, u…)

Figure 5. Summary of argument adaptation combinators.

int pos = 0;  // receiver in leading position
MethodHandle println2out = MethodHandles
   .insertArguments(println, pos, System.out);
println2out.<void>invokeExact("hello, world");

Figure 6. Creating and using a bound method handle.

5 Some roads were not taken:  In early draft specifications for JSR 
292, the method name was simply invoke, but that name is re-
served in case of a future need for strongly-typed invocation from 
Java.  We also considered defining a new “invokehandle” byte-
code to express this operation, but there are no differences from 
invokevirtual significant enough to merit a new bytecode.



Actually, a bound method handle can bind any argument, of 
any type, in any position, not just a leading reference argument.  
Cascading method handles can bind multiple arguments.

A bound method handle flexibly combines code and data into a 
single reference.  With this building block, many function-
oriented design patterns become more practical in the JVM.

4.5 Java Method Handles

One special sort of method handle mixes object-oriented features 
into  function pointers.  A Java method handle is created simply by 
subclassing the abstract type java.dyn.JavaMethodHandle 
and adding any desired fields, behaviors, and API elements.  A 
Java method handle h  is always created with a target method han-
dle m.  It  behaves (i.e., responds to invokeExact) like a bound 
method handle b for which the target is m and the bound receiver 
argument is h  itself.  It differs  from such a b only in that  h is its 
own bound argument.  The constructor for JavaMethodHandle 
takes a specification, either a local name or a method handle, of 
the target m.

The result of this self-recursion maneuver is twofold:   h is a 
method handle, and  h is an object with state, behavior, and APIs.  
One thing h cannot do is inherit from another superclass like Num-
ber or AbstractList, but  it can implement interfaces.  Figure 7 
is an example of a method handle with an extra object-like API.

As a matter of programming convenience, Java method han-
dles also allow programmers to use inner class notation when 
working with method handles.  Figure 8 is an example of a curried 
function greet implemented using an anonymous class.

Both of these examples exhibit hybrid object/functional pro-
gramming patterns.  Although the second example may be a mere 

abstract class AbstractSettableMethodHandle
    extends JavaMethodHandle {
  private final MethodHandle setter;
  public MethodHandle setter()
    { return setter; }
  public AbstractSettableMethodHandle(
      String get, String set) {
    super(get);  // self is the getter
    MethodType getType = this.type();
    MethodType setType = …;
    this.setter = MethodHandles.publicLookup()
       .bind(this, set, setType);
  }
}

Figure 7. Object-like method handle with a “setter” API.

MethodHandle greet(final String greeting) {
  return new JavaMethodHandle("run") {
      void run(String greetee) {
        String s = greeting+", "+greetee;
        System.out.println(s);
    } };
}
...
greet("hello").<void>invokeExact("world");
// prints "hello, world"

Figure 8. Anonymous class specifying a method handle.

creature comfort for Java programmers, the first  example shows 
that Java method handles will be needed if method handles are to 
be first-class values in hybrid languages like Scala [Odersky04] or 
OCAML [Clerc09].

4.6 Method Handles and Control Flow

Further method handle factories and combinators supply  data 
structure and control flow operations in method handle form.  
These support field and array element  access, conditionals, and 
exception processing.

The most important method in this last category builds  a stan-
dard “if-then-else” control structure:

∀S λ(x,y,z). λa:S. if (x a) then y a else z a
We call it MethodHandles.guardWithTest.  It is  polymorphic 
across all  signatures.  It is designed to support type dispatch logic 
where an expected condition is tested by a predicate which guards 
a fast path; a slow path (the third argument) is taken as a fallback.

As we will see in section 5 below, guardWithTest is enough 
to  implement many dispatch methods such as inline caches.  This 
supports generalization (l) in section 2.1 above.

Moreover, by  combining foldArguments with a direct 
method handle to the method MethodHandle.invoke itself, 
multi-way branch combinators can be created such as this one:

λ(S,disp). λ(x,*a:S). disp(x).invokeExact(x,*a)
Here, disp is a dispatch function which  looks at a receiver argu-
ment x and returns a method handle to invoke on x and the rest  of 
the arguments.  The parameter S is a MethodType required to  
select the right overloading of MethodHandle.invokeExact.

4.7 Security Considerations

The JVM has important  security features, notably link-time access 
checking, call-chain permission checks, and class loader con-
straints.  JSR 292 features add nothing new to this mix, except  for 
creator-based access checking of direct  method handles, as de-
scribed in section 4.1 above.  Direct method handles add no loop-
holes; with respect to access checking they  are equivalent  in 
power to inner classes.

The setup and linking of a dynamic call site is  secure, because 
only  the class containing the call site, or a privileged third party, 
may specify a bootstrap method.  The target of a call  site may be 
set without any access checking, but the call site itself is  a refer-
ence created by the bootstrap method, and shared only with the 
JVM.  As long as the call site reference is shared only with trusted 
allies, no attacker can read or write its target.

In the JVM, a privileged operation is allowed or denied based 
on  the callers of the operation.  This  is done by examining the call 
chain, either directly by walking  the stack or by looking at stack 
summaries.  Thus, changing the call chain can  perturb security 
checks.  A call to a direct method handle with no adaptation pro-
duces the same set of stack frames as a normal call.  However, a 
call with signature adaptation or filtering can require extra adapter 
frames within  the JVM.  These extra frames must neither increase 
nor decrease permissions for checks based on call chains.

A method handle call performs signature checking against  the 
handle’s MethodType, which is a reified signature containing 
Class references, not a symbolic value containing merely their 
names.  For this reason, class loader constraints  do not need to be 
checked across method calls.  If a constraint would be violated by 
a normal method call, a WrongMethodTypeException results 
from the analogous method handle call.

The JSR 292 draft API contains no standard combinators to 
execute AccessController.doPrivileged or similar meth-
ods.  They can be easily defined by user code.



5. Case Study: Inline Caches and invokedynamic

An inline cache is a call site which keeps track of the locally ob-
served type of a message receiver.  It speculatively optimizes the 
case of a repeated type by directly jumping to a pre-dispatched 
method.  This technique was created for Smalltalk a quarter cen-
tury ago [Deutsch84].  In this usage, the term inline means local.

A message which potentially dispatches to different methods 
for varying receiver types is called polymorphic.  By contrast, 
when a receiver type appears to be actually constant at  a call site, 
that call site is  called monomorphic.  The key insight behind the 
inline caching optimization is that most call sites  are monomor-
phic.  This is true even though many call sites use messages which 
are polymorphic when considered across the whole program.

When they are tracked locally enough, operand type statistics 
are highly correlated and biased.  To exploit this regularity, a 
number of interrelated tactics are used in modern systems: 6

1. Operand types are collected at message sends and other oppor-
tune points, and are captured in  inline caches or summarized 
in a type profile.  This information is local to each instruction.

2. Instructions are split by trace splitting or inlining, producing 
refined caches or profiles.  The splits  can  be chosen so that the 
increased locality across different traces of the same original 
code is likely to exhibit distinct type statistics.

3. Operand types are predicted, based on statistics, a priori  ex-
pectations, local inference, global analysis, or all of the above.

4. Speculative optimizations are placed on a fast path  protected 
by  a guard predicate testing a speculated condition.  Each fast 
path is joined by a slow path which handles guard failures.

5. Slow paths may execute more general code or branch to  an-
other execution mode, such as an interpreter.  They may also 
trigger a discard of the current optimized code, queue it  for 
future re-optimization, or patch the code7 of the fast path.

6. If the slow path does not  merge with  the fast path’s successors, 
the fast path  guard dominates  them, allowing speculative type 
predictions to flow forward in the control flow graph.

7. A runtime dispatch can be speculatively resolved to a method, 
which then may be called directly, after a simple type guard.  
The guard is usually a pointer comparison with a predictable 
branch.  This  tactic strength-reduces complex dispatch logic 
such as a virtual table lookup or method table search.

8. Speculatively dispatched methods can be inlined, and the in-
lined code can be customized to  all  relevant  locally predicted 
operand types.  Sometimes an out-of-line call is preferable.

9. If a dynamic compiler runs after type information is collected, 
it uses this type information to guide the previous steps.
A basic combination of these techniques is a patchable call  site 

which is guarded by a type test, whose fast path directly invokes a 
predicted method, and whose slow path updates the state of the 
call site to adapt to a previously unexpected type.

The initial state of such a call site is unbiased to any particular 
type, and may be called neutral or unlinked.  When the optimiza-
tion  works, the site stays monomorphic after the first use, special-
ized to a particular type.  If too many types appear, the call site is 
patched to a megamorphic state in which all  types can be handled 
robustly.

5.1 Inline Caches for JVMs

Specifically, consider an inline cache for Number.intValue, in 
the typed Java expression y=x.intValue().  Suppose that after 
some time it has been specialized to Integer.  Then the call site 
logic may be described by the pseudocode in Figure 9.

The fast path, marked F, is the inlined intValue method for 
Integer, which loads the value field from the box class.  The 
slow path, marked S, is taken when x appears with an unexpected 
type, such as BigInteger or Double.  It may simply be a multi-
way call through the virtual table of Number.  The slow path will 
also cause the JVM to consider modifying this call site.

What does this  technique look like with invokedynamic?  
The essential elements are call site modification via setTarget, 
the guardWithTest combinator to protect the fast  path, a sub-
class of CallSite to manage cache state and policy, and a 
method handle to manage the slow path, all bound to the call site.

To be specific, let us assume an original untyped expression 
y=x+1.  Dispensing with configuration and bootstrapping details, 
suppose the site has already been through the following events:
• The expression has been compiled to bytecode as a dynamic 

call site, with a signature of 〈Object, int, Object〉.
• The bootstrap method has reified it  as an ICCallSite, a class 

defined by some language runtime.
• After many calls, x has always been an Integer.
• The call  site is eventually relinked  to a guardWithTest 

which checks this assumption and calls a method specialized 
to the primitive type int.

In the steady state, the execution of the call site proceeds as if 
through the pseudocode in Figure 10.

There is no particular class  hierarchy here, just  the concrete 
type Integer and a static method in a fictitious class Runtime.

Number x = …;
int y;
if (!(x instanceof Integer))
  /*S*/ y = x.intValue(); // invokevirtual
else
  /*F*/ y = ((Integer)x).value;

Figure 9. Pseudocode for inline cache logic of invokevirtual.

Object x = …, y;  // y = x+1
static final ICCallSite site = …;
static final MethodHandle logic = …;
if (site.target != logic)
  /*L*/ y = site.target.invokeExact(x,1);
else if (!(x instanceof Integer))
  /*S*/ y = site.cacheAndCall(x,1);
else
  /*F*/ y = Runtime.add((int)(Integer)x,1);

Figure 10. Pseudocode for inline cache, at a dynamic call site.

6 Beyond Smalltalk 80, many combinations of these techniques 
were first explored in the Self project [Chambers91], and they 
continue to be used in present-day high performance JVMs.  
Smalltalk and Self were strong influences on their design. The 
product JVMs of Sun and IBM started out as Smalltalk engines.
7 In a multiprocessor system, patching code is a difficult task.  The 
various techniques for patching safely are worth recounting but 
are beyond the scope of this paper.



Note that the right-hand operand, the constant 1, is  represented 
as the primitive type int in the signature of the call site, instead 
of boxing  it.  Specialized argument types at dynamic call sites  
defer boxing or casting to the language logic which resolves the 
call site, making the bytecode simpler and allowing more flexibil-
ity during linking.  In this case, we assume there is a routine 
Runtime.add which is specialized to the int primitive type.  It 
might  contain only  an iadd instruction without overflow check-
ing and returning an int, or it might have an overflow path which 
returns a BigInteger or Double through an Object return type.

The linkage path, marked L, is taken only if the call site is  
relinked to  a new target.  This could happen after x begins to take 
on  unexpected types.  Compiled code for this path may have an 
explicit check, or else there may be a barrier in the 
CallSite.setTarget method which triggers patching of the 
code.  If the call site turns out to be megamutable, only  the L path 
is likely to be compiled.

The slow path, marked S, is the fallback side of a 
guardWithTest combinator, taken if the optimistic type test 
fails.  Since the slow path needs a reference to  the reified call site, 
the slow path will be a bound method handle pre-applied to the 
site.  The fictitious cacheAndCall method of ICCallSite will 
inspect the type of x and dispatch, in  a language-specific way, to a 
suitable target method, or else perform language-specific error 
processing.  The cacheAndCall method also keeps track of the 
observed types of x and manages the call site target accordingly.  
It is this path which earlier recognized that the type of x is always 
Integer and put the logic of Figure 10 into the site as a com-
bined method handle.

Finally, the fast path, marked F, calls a target method special-
ized for integer operands.  The target  method takes  primitive int 
arguments.  The unboxing of x, which appears as a cast in the 
pseudocode, is supplied by an adapter method handle wrapped 
around Runtime.add.

5.2 Optimizing an Inline Cache

In its classic form, an inline cache is not easily optimized, because 
it  takes the fixed form of a patchable out-of-line call, associated 
with  a patchable test.  However, because code shapes  like the 
examples above can be understood by an optimizing compiler, 
much more can be done.

If the compiler knows enough type history to speculate that a 
virtual call site will  stay monomorphic, it can  inline the target 
method.  Likewise, if an optimizing compiler can  speculate that a 
dynamic call site is not megamutable, it can inline the target 
method handle graph.

Inlining through method handle calls  is practical  because 
method handle graph structure is immutable and scrutable; it can 
be walked by the compiler.  The graph can be inlined whenever 
the root method handle can be constant-folded.

In the examples in Figures  9 and 10 above, it is likely that an 
optimizing dynamic compiler will succeed in inlining and opti-
mizing from the invoke instruction all the way into the target 
method.  This is feasible because the fast paths are scrutable and 
are gated by slowly changing predicates.  In particular, the 
invokevirtual of Number.intValue may well inline up to the 
getfield instruction which fetches the Integer.value field of 
x.  The invokedynamic instruction may well inline all the way 
to the iadd instruction at the heart of Runtime.add.

Inlining is  a most important optimization because it tends to 
produce many additional optimization opportunities as the inlined 
code is integrated into the code around the call site.  Type and 
value inferences can spread to  more use points.  If loops and other 
hot code can be fully inlined into all call sites, then more sophisti-

cated escape analyses and loop transformations can apply.  As the 
“optimization horizon” widens, more and more techniques can 
synergistically apply.  Compilation can be viewed as a process 
which starts with a narrow selection of source code and gradually 
enlarges the optimization horizon until a large body of source 
code can be transformed collectively into efficient machine code.

Many of the optimizations described in this section are specu-
lative.  By inlining through the mutable target of a dynamic call 
site, the dynamic compiler gives language logic a “hook” for mak-
ing language-specific speculations, and embedding the resulting 
guards and fast paths into optimized code.

The assumed stability of dynamic call site targets, plus the 
scrutability of method handle graphs, introduces method handles 
as a second intermediate language in the JVM, on a par with byte-
code.  Each  language can incorporate expressions from the other 
by  direct  reference.  Bytecode incorporates method handles via 
invokedynamic instructions, while a direct  method handle in-
corporates the bytecode of the Java method to which it refers.

Since call site splitting is  an important transformation, the JSR 
292 draft specification also allows the JVM to split  dynamic call 
sites.  This has the perhaps surprising effect  of invoking the boot-
strap method to reify new copies of previously reified call sites, 
addressing pain point 12 in section 2.2 above.8

5.3 Many More Variations

The above example of invokedynamic can be varied by chang-
ing the language logic embodied in the reified call  site and/or the 
bootstrap method.  For example, decision trees for polymorphic 
inline caches can be composed from multiple guardWithTest 
combinators.  Multi-way branch combinators be used instead of 
guards.  The bootstrap method can hand the JVM a plain 
CallSite, or it  can use a language-specific subclass  equipped 
with fields for counters, type summaries, version numbers, etc.9

Our example extends readily to multiple dispatch.  Instead of 
the expression x+1 with its known right-hand type of int, the 
expression x+w can be compiled by replacing int values with 
Object or Integer values, and guarding the fast path by testing 
both  operands for type Integer.  Languages with generic arith-
metic have a powerful new tool for optimizing on the JVM.

Multiple dispatch may also be used to emulate overloaded 
methods for Java, as is done by the “POJO Linker” of the Dyna-
lang Project [Szegedi09].  Simple linking to Java methods can be 
accomplished in the bootstrap method by setting the target to a 
direct method handle, and forgetting about the reified call site.

Mixed-mode JVMs like HotSpot  delay dynamic compilation 
of methods, causing a different  sort  of state change at call sites as 
executable representations are updated.  This pattern becomes 
available to language logic via mutable dynamic call sites.  A 
scripting language runtime may organize its  program representa-
tion  in several formats, starting with text fragments, moving to  
abstract syntax trees  (ASTs), and finally optimizing to bytecode.  
An AST is equipped with its  own interpreter.   If the bytecode is a 
foreign instruction set with an associated interpreter, bytecode 
fragments would be bound to that interpreter.  These varying rep-
resentations must at some point be managed under a common 
invocable type, and method handles fill this role well.  In particu-

8 The author is indebted to Rémi Forax and Neal Gafter for insist-
ing on the need for JVM-directed splitting of dynamic call sites.
9 It is possible to retract the use of a specialized CallSite sub-
class by unlinking the call completely.  This will force a new trip 
through the bootstrap method, to make a new CallSite.



lar, a text fragment, AST, or foreign bytecode set  can be bound, as 
data, to an evaluator (a Java method) in a bound method handle.

For example, each JRuby AST node has an interpret 
method which executes it.  Binding such a node to its  interpret 
method will create a bound method handle that behaves like an 
entry point into the JRuby AST interpreter, starting at that node.  
If JRuby decides to compile the AST, it might  replace uses  of the 
method handle by a direct method handle to a bytecoded method.

6. Early Adopter Experience

By using custom-written simulator objects  instead  of method han-
dles and static final variables  as call site roots, it is  possible to 
gain some of the optimizations that invokedynamic provides, 
without using JSR 292.  The JRuby engineers, consulting with the 
HotSpot  compiler team, spent many months optimizing their in-
line caching call  paths to map better to  HotSpot’s native inline 
caching optimization.  Using simulator objects, they implemented 
language-specific inline caches and delayed compilation from 
AST to bytecode, techniques  which we described  above in sec-
tions 5.1 and  5.3, respectively.  The result  was a Ruby implemen-
tation which was about double the performance of the standard C-
based version [Cangiano08].  More recently, they have adopted 
JSR 292 functionality, and found that  their implementation  has 
become simpler, with no loss of performance [Nutter08].  This is 
because JSR 292 provides a way to express their intentions to the 
JVM more directly.  The performance will continue to improve as 
the JVM does a better job optimizing invokedynamic.

Another relevant use of simulator objects is the JSR 292 Back-
port [Forax09].  This  project  emulates invokedynamic in older 
JVMs by editing bytecode as it  is loaded, expanding 
invokedynamic and method handle invocation points into 
simulation code.  To gain the inlining required for best perform-
ance, hot  method handle graphs are detected and converted to  
bytecode.  The bytecode is generated on the fly by walking the 
method handle graphs, and then handed to  the JVM for optimiza-
tion.  After loading and warm-up, the performance is  similar to the 
current version of JSR 292.  We expect that  performance will be 
best in the native version, because the inlining  decisions will  be 
carried out in one place, inside the dynamic compiler.

7. Comparative Intermediate Languages

The beginning of this paper pointed out that  JVM bytecode is  
designed to  be compact, executable, translatable, portable, verifi-
able, modular, and easy to read and write.  These are all character-
istics of a good intermediate language or representation.10

An intermediate language is useful  because it provides an in-
terface between a wide variety of producers and consumers.  Pro-
ducers of bytecode include source compilers, assemblers, and  
dynamic code generators.  The consumers are the interpreters and 
dynamic compilers of JVMs, plus various module managers, de-
buggers, and programming environments.  Some producers  are 
also consumers, such as annotation processors, aspect engines, 
and obfuscators.  The power of an intermediate language comes 
from the variety of its  M  producers and N consumers, and also 
from the rich interaction of the M×N combinations between pro-
ducers and consumers.

To evaluate the needs of languages on the JVM, we must  be 
aware of the strengths and weaknesses in existing implementa-
tions, especially of dynamic languages.  The first executable form 
of such  a language is usually an AST, which is walked by an in-
terpreter.  If actual  JVM method invocation is done at  a central-
ized place in the interpreter, the type history of every source-level 
call is collected  by the JVM, in a giant reverse split, into a single 
megamorphic type profile.  This is pain point 4 from section 2.2.

Moreover, special semantics such as JavaScript support  for 
XML objects [Flanagan06] are often coded, as in Rhino [Mozil-
la09], by hard-coding extra type tests in central  interpreter rou-
tines, whose increased bulk becomes harder to optimize.  A more 
modular solution is to use a metaobject protocol  [Kiczales91, 
Szegedi09] to control method linkage and dispatch.

A final  problem with an AST is its  richness; usually it is print-
able, debuggable, editable, etc.  Because one can do more with an 
AST than simply  executing it, it is hard to isolate the executable 
slice of it and optimize down to machine code that only executes.

Most projects probably stop with an AST, perhaps  adding in-
line caches.  Some compile to  JVM bytecode and rely on the JVM 
to  manage optimization; Clojure is successful at this because its 
simulation objects are low-level and hence scrutable to the JVM.  
Others like Rhino compile the interpreter calls made at  the leaves 
of the AST into a sequence of calls  to the interpreter runtime.  
This is only modestly faster (often about 2×) than AST walking.

Interestingly, Microsoft’s  DLR uses an AST [Hugunin07] for 
specifying dynamic behaviors.  This AST is better suited for the 
purpose than user-designed ASTs because it  (a) is matched to  
language neutral bytecode operations and (b) is consumed directly 
by  the dynamic compiler.  Our method handle graphs play a simi-
lar role.  In comparison with DLR AST, they are opaque and 
somewhat coarse-grained, since they cannot specify individual 
variable references, or directly specify instructions like iadd.  On 
the other hand method handles are directly invocable.

An unused tactic is bytecode generation with call site editing, 
even though this is commonly done by  JVMs at  the machine code 
level.  The bytecode format is rigid.  To  change a single method 
call after it has been linked, a new set of bytecode must be assem-
bled, loaded, and somehow replaced over the old version.  The 
JVM must recheck and re-optimize not only the changed method 
call, but all the surrounding code.  Such hot swapping  is possible, 
but making it  complete, correct, and efficient is  still a research 
topic [Subram09, Wuerth09].  Hot swapping is sometimes used to 
implement aspect-oriented programming [Nicoara08], but using it 
for dynamic languages seems a dim hope.

There is one more objection to dynamic bytecode generation 
on  memory limited mobile devices.  Such systems often need to 
know code sizes early; some disallow dynamic code generation.

The awkwardness of incrementally generating or transforming 
bytecode is  a consequence of its compactness, and its designed-in 
similarity to machine code.  By contrast, the pointer-rich  structure 
of method handles makes them easy to patch together.

Method handles  are not always  the best choice.  Their opaque-
ness makes them difficult  to transform or to transport outside of 
the JVM that created them.  They are unsuitable for representing 
contextual or frame-relative operations, such as local variable 
definition.  If not compiled, they are less  compact and slower to 
execute than bytecode, especially for complex code.

There seems to be a good impedance match between bytecode 
and method handles.  The dynamic overhead of shifting  between 
representations is low, and there is  parity between them in  expres-
sive power.  Although coding with  method handles  involves a 
certain amount of boilerplate, our experience of programming 
with the dual representations has been rewarding so far.

10 Exactly when a representation becomes a language is a question 
we will not attempt here, except to observe that languages seem to 
be less context-dependent and more relocatable than other data 
structures.  This may be more a difference of degree than of kind.



8. Conclusion

The JSR 292 design folds inline caches and method handles 
into  the JVM’s intermediate language.  The invokedynamic 
instruction is a hinge-point between two complementary kinds of 
intermediate language:  bytecode and combinators.

Bytecode is still the most efficient and compact representation 
for computations  which are statically fixed.  Conversely, method 
handle graphs are the most efficient way to  glue together compu-
tations on the fly.  Both representations are directly executable 
and compilable.  Both have the virtues of easy construction, 
modularity, type safety, security, and standardization.

The two languages can be woven together.  Bytecode contains 
dynamically editable holes at  invokedynamic instructions.  
Method handle graphs, though not statically constructed, are 
woven into those bytecode holes.  The combination can be in-
lined, optimized, and compiled down to efficient machine code.

Picking the right language for the job is an old theme, which is 
now gaining acceptance as compelling new languages begin to 
run on the JVM.  We hope to  empower implementors by giving 
them their choice of the right intermediate language for each job.
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