Visual Studio 2010 CTP Walkthroughs
There are a number of new and enhanced features available in the Visual Studio 2010 CTP. This document contains walkthroughs that will help you learn about these new features and tools.
Table of Contents
Getting Started	4
How to Provide Feedback for the CTP	4
Exploring the Visual Studio IDE	5
Start Page Customization	5
What’s New About the Start Page	5
Walkthrough: How to Customize the Start Page	5
Visual Studio 2010 Editor	10
What's New in the Visual Studio 2010 Editor	10
Walkthrough: How to Adapt to the Visual Studio 2010 Editor	11
Walkthrough: How to Add Syntax Coloring in the Visual Studio 2010 Editor	14
Walkthrough: How to Highlight Text in the Visual Studio 2010 Editor	17
Walkthrough: How to Provide IntelliSense in the Visual Studio 2010 Editor	19
Walkthrough: How to Use a Shell Command to Add a Comment Adornment in the Visual Studio 2010 Editor	23
XML Schema Designer Experience	27
XML Schema Designer Walkthrough	27
Multi-monitor Support	35
What's New in Tool and Document Windows	35
Walkthrough: How to Float Document and Tool Windows Outside the IDE	35
New Coding Experiences	38
Coding in Managed Languages	38
What's New in Managed Languages for Visual Studio 2010 CTP	38
Walkthrough: Call Hierarchy	40
Walkthrough: Dynamic Programming in C#	45
Walkthrough: TDD Support with the Generate From Usage Feature	52
Walkthrough: Office Programmability in C# and Visual Basic	61
Walkthrough: Quick Search for Files and Symbols	68
Development in C++	72
What's New in Visual C++ (CTP)	72
Walkthrough: Using MSBuild to Create a Visual C++ Project	77
How to: Add a Build Event to an MSBuild Project	85
How to: Add a Custom Build Step to an MSBuild Project	87
How to: Add Custom Build Tools to an MSBuild Project	88
How to: Create a Project-to-Project Reference	89
Walkthrough: Adding a Task Dialog to an Application	92
How to: Add Support for the Restart Manager	96
Walkthrough: Deploying a Visual C++ Application	97
How to: Upgrade from Earlier Versions to Visual C++ 10	100
Multi-targeting	103
What’s New in Multi-Targeting	103
Walkthrough: Multi-Targeting	103
Office Development	107
Walkthrough: Creating Your First Document-Level Customization For Word	107
Walkthrough: Creating Your First Application-Level Add-in for Outlook	110
Walkthrough: Creating a Custom Tab by Using the Ribbon Designer	114
Parallel Computing	120
Parallel Debugging Toolwindows in Visual Studio 2010	120
Parallel Programming with the .NET Framework 4.0	128
Parallel Programming with the Concurrency Runtime & the Parallel Pattern Library	132
Parallel Profiling Views in Visual Studio 2010	139
Microsoft Sync Framework	147
Synchronizing Databases in a Peer-to-Peer Topology Using the Microsoft Sync Framework	147
Web Development	194
Walkthrough: Targeting multiple versions of ASP.Net	194
Walkthrough: HTML Code Snippets	200
Walkthrough: Transforming Web.Config for Deployment	204
Walkthrough: Packaging & Deploying a Web Application which uses VS Development Web Server	220
Walkthrough: Packaging & Deploying a Web Application which uses IIS	238
XSLT Debugger and Profiler	263
The XSLT Profiler Add-in for Visual Studio 2008	263
GelFX for Windows Presentation Foundation	273
What's New in User-Interface Development	273
Working with Data	274
Working with Data in WPF Applications	274
What’s New in the WPF Designer for Binding WPF Controls to Data	274
Walkthrough: Using the Designer to Bind WPF Controls to Data in a Dataset	274
Walkthrough: Using the Designer to Bind WPF Controls to Data in an Entity Data Model	280
Build and Deployment	285
Building Deployment Packages by Using Visual Studio Windows Installer XML (WIX)	285
What's New in Installer Technology	285
Walkthrough: How to Deploy an Application By Using WiX	285
MS Build 4.0	298
Walkthrough: How to Create a Custom Platform	298
Walkthrough: How to Create an Inline Task	304
Walkthrough: How to Create Custom Property Pages	309
Walkthrough: How to Use the C++ MSBuild Project System	313

This document contains pre-release information that is subject to change in future releases. Information in this document, including URL and other Internet Web site references, is subject to change without notice. Unless otherwise noted, the example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious, and no association with any real company, organization, product, domain name, e-mail address, logo, person, place, or event is intended or should be inferred. Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.
Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.
© 2008 Microsoft Corporation. All rights reserved.
Microsoft, MS-DOS, Windows, Windows NT, Windows Server, and the other product names listed on the trademarks page of the Microsoft Web site are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.
All other trademarks are property of their respective owners.

[bookmark: _Toc210728648][bookmark: _Toc210113821]Getting Started
[bookmark: _Toc210728649]How to Provide Feedback for the CTP
Where to Start
Microsoft has created a new community website for the September CTP release. This website contains information and technical support for the walkthrough scenarios including links to technical support forums,
e-mail addresses to contact support, and other valuable CTP information. Please start here for more information.
What Kind of Feedback Are We Looking For?
We want to hear from you! In this release, Microsoft would like feedback on the experience stepping through the walkthrough scenarios. Because this is an early release of the product, many of the features outside of the walkthroughs are still under development. As such, we ask that the feedback is scoped to just the walkthrough experience.
These are some questions that would be valuable to answer when giving feedback:
1.	Which walkthrough are you providing feedback on?
2.	What did you think of the feature(s) in the walkthrough(s)? Was the behavior expected? Was it easy to use?
3.	What suggestions do you have for improving the feature(s)?
How to Provide Feedback
When you are ready to send in comments there are several ways to connect with the Visual Studio development team. We recommend that you start with the community website.

[bookmark: _Toc210728650]Exploring the Visual Studio IDE

[bookmark: _Toc210113823][bookmark: _Toc210728651]Start Page Customization
This section contains the following walkthroughs.
· What’s New About the Start Page
· Walkthrough: How to Customize the Start Page

[bookmark: _What’s_New_about][bookmark: _Toc210728652]What’s New About the Start Page
The Visual Studio 2010 CTP Start Page uses the Windows Presentation Framework (WPF) to provide more flexibility and an enhanced user experience. By editing the startpage.xaml file, you can customize the Start Page to add or remove content, change the look and feel, access RSS feeds, and even add custom controls that have code-behind. These changes are specific to the user because the .xaml file is stored in the user’s profile directory; if no custom Start Page is present for the current user, Visual Studio loads the default Start Page. To explore Start Page customization, see Walkthrough: How to Customize the Start Page.

[bookmark: _Walkthrough:_How_to_1][bookmark: _Toc210728653]Walkthrough: How to Customize the Start Page
[bookmark: _Toc207519377]Introduction
Visual Studio 2010 has a new customizable Start Page that is built by using the Windows Presentation Framework (WPF). This walkthrough shows how to customize the Start Page by editing a user-specific StartPage.xaml file.
The Start Page tool window in Visual Studio is a VSPackage that loads WPF XAML and can execute Visual Studio internal commands. Although the Start Page package contains a default XAML page, it first looks for a user-specific XAML page. If such a page exists, the Start Page loads it instead of the default page.
By default, the Start Page has a control that provides the tabs on the left, the button tray at the top, and a content area at the bottom. There are also two other controls, a small RSS title feed at the bottom of the page and a most recently used (MRU) project list. Although the entire XAML page could be replaced, this walkthrough just focuses on changes to buttons and content that are consistent with the look and feel of the default page.
[bookmark: _Toc207519378]This walkthrough shows how to accomplish the following tasks:
· Create a user start page.
· Remove a button or other content.
· Add a button for a Visual Studio command.
· Add a button that has content.
The walkthrough requires familiarity with XAML markup. For more information, see Getting Started with Windows Presentation Foundation at http://msdn.microsoft.com/en-us/library/ms752299.aspx.
Creating a User Start Page
When Visual Studio loads the Start Page, it first looks for a user-specific StartPage.xaml file in ..\<documents folder>\Visual Studio 10\StartPages\. This StartPage.xaml file is where you will add your customizations. If Visual Studio does not find a StartPage.xaml in \StartPages\, it uses the default Start Page that is compiled into Visual Studio assemblies.
To create a user Start Page
· In <Visual Studio installation path>\Common7\IDE\StartPages\en\, copy StartPage.xaml and StartPage.csproj and then paste them in ..\<documents folder>\Visual Studio 10\StartPages\.
The copy of StartPage.xaml in ..\<documents folder>\Visual Studio 10\StartPages\ provides boilerplate for you to customize. Any changes to this copy are reflected immediately in the Start Page tool window in Visual Studio.
The StartPage.csproj file contains references to the various assemblies that enable the StartPage.xaml file to appear correctly in the WPF Designer. The files must be in the same folder. You can edit StartPage.xaml in the WPF designer, or by using a text editor.
Note: The StartPage.xaml file in <Visual Studio installation path>\Common7\IDE\StartPages\en\ is just a template for you to copy. It is not loaded by Visual Studio.
[bookmark: _Toc207519382]Removing a Button or Other Content
The simplest customization is to remove content that currently appears on the Start Page.
To remove a button
1.	Open the user copy of StartPage.csproj.
2.	From Solution Explorer, open StartPage.xaml and use an XML Comment to comment out a button or some other content.
The following example shows how to remove a button from the Start Page by commenting out the <vs:TrayGroupItem> element that defines the button.

Before:
<vs:TrayGroupItem Content="CTP Walkthroughs" ImageSource="pack://application:,,,/Microsoft.VisualStudio.Shell.UI;Component/Packages/StartPage/Images/02_ctpwalkthroughs.png" Command="{x:Static vs:StartPageToolWindow.ExecuteCommand}" CommandParameter="{StaticResource Links.CTPWalkthroughs}" x:Uid="Walkthroughs_Item"/>

After:
<!-- <vs:TrayGroupItem Content="CTP Walkthroughs" ImageSource="pack://application:,,,/Microsoft.VisualStudio.Shell.UI;Component/Packages/StartPage/Images/02_ctpwalkthroughs.png" Command="{x:Static vs:StartPageToolWindow.ExecuteCommand}" CommandParameter="{StaticResource Links.CTPWalkthroughs}" x:Uid="Walkthroughs_Item" /> -->
[bookmark: _Toc207519384]Adding a Button for a Visual Studio Command
With just one XAML declaration, you can add to the Start Page a button that launches a Visual Studio command.
To add a button
To add a button, insert this element immediately after the <vs:TrayGroupItem> element you commented out earlier:
<vs:TrayGroupItem Content="Create GUID"
 ImageSource="C:\Users\Public\Documents\CTPWalkthroughs\Visual Studio\Samples\Start Page\Heart.png"
 Command="{x:Static vs:VSCommands.ExecuteCommand}"
 CommandParameter="Tools.ExternalCommand1" />

This adds a button on the “Welcome” tab, after the “CTP Walkthroughs” button. When the new button is clicked, it executes the first command that is defined under External Tools on the Tools menu. By default, that command is Create GUID.
[bookmark: _Toc207519385]Adding a Button That Has Content
Every button can have its own content in the content area of the Start Page. When the button is selected, the content is shown. This section shows how to create a custom WPF control that displays content from a blog by using an RSS feed.
While XAML content can be inserted directly as a child element of a <vs:TrayGroupItem /> tag, the recommended method is to use a WPF User Control, which has the advantage of allowing code behind the XAML, making redistribution of the addition easier, and keeps StartPage.xaml clean.
Note: Visual Studio 2010 CTP on virtual PC (VPC) does not have Internet access. Therefore, a local file is used to simulate the RSS feed. If you enable Internet access from the VPC, you can replace the local file with the actual online RSS feed at http://blogs.msdn.com/somasegar/rss.xml and execute links. Please disable Internet access before continuing with other walkthroughs.
To add a button that has content
1.	Create a WPF control by opening StartPage.csproj, right-clicking the StartPage solution in Solution Explorer, and then clicking Add New Project. For Project Type, expand the Visual C# node and select Windows, then from the Templates pane, select WPF User Control Library. Name the project SomaBlog, and put it in C:\Temp\StartPage\. For more information, see WPF Controls Overview at http://msdn.microsoft.com/en-us/library/bb613551.aspx.
2.	Add a project reference to the Start Page integration assembly by right-clicking References in Solution Explorer and then clicking Add Reference. Click Browse and then type C:\Program Files\Microsoft Visual Studio 10.0\Common7\IDE\Microsoft.VisualStudio.Shell.UI.dll. Click OK.
	Adding this reference enables the VSCommands command routing, which executes internal Visual Studio commands through XAML.
3.	Replace the contents of UserControl1.xaml with the following markup:
<UserControl x:Class="SomaBlog.UserControl1"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:vs="clr-namespace:Microsoft.VisualStudio.PlatformUI;assembly=Microsoft.VisualStudio.Shell.UI">
 <Grid>
 <Grid.Resources>
 <XmlDataProvider x:Key="SomaBlog" XPath="rss/channel" Source=" C:\Users\Public\Documents\CTPWalkthroughs\Visual Studio\Samples\Start Page\rss.xml" />
 </Grid.Resources>
 <Border BorderBrush="Black" BorderThickness="1" CornerRadius="10" Padding="4" Margin="0,0,0,10" >
 <ItemsControl DataContext="{StaticResource SomaBlog}" ItemsSource="{Binding XPath=item}" BorderBrush="Transparent" Padding="6" >
 <ItemsControl.ItemTemplate>
 <DataTemplate>
 <TextBlock Margin="0,0,0,6">
 <Image Source="C:\Users\Public\Documents\CTPWalkthroughs\Visual Studio\Samples\Start Page\greendot.png" Height="10" Margin="0,0,5,0" />
 <Hyperlink Foreground="White" Command="{x:Static vs:VSCommands.Browse}" CommandParameter="{Binding XPath=link}">
 <TextBlock FontSize="12" Text="{Binding XPath=title}" /></Hyperlink></TextBlock>
 </DataTemplate>
 </ItemsControl.ItemTemplate>
 </ItemsControl>
 </Border>
 </Grid>
</UserControl>
	If changes do not immediately appear in the WPF designer, reload the control by clicking the Click Here to Refresh bar.
4.	Press CTRL+SHIFT+B to build the project.
5.	To reference the WPF control from the Start Page, first copy SomaBlog.dll into ..\Program Files\Microsoft Visual Studio 10.0\Common7\IDE\StartPageAssemblies\.
Note: The StartPageAssemblies folder may not exist by default, in which case you must create it.
6.	Create a button on the Start Page to access the blog by adding the following markup to the list of buttons in StartPage.xaml:
<vs:TrayGroupItem Content="Soma's Blog" ImageSource="C:\Users\Public\Documents\CTPWalkthroughs\Visual Studio\Samples\Start Page\soma.png" InnerContentUri=" SomaBlog;Component/UserControl1.xaml" />

Optional: Using the InnerContentUri attribute causes the VS Start Page custom control to load the inner content and bubble up helpful error messages if there are any to the user. Another option, instead of using the InnerContentUri attribute, would be to declare a namespace for the user control by adding this attribute to the root element in StartPage.xaml:
xmlns:soma="clr-namespace:SomaBlog;assembly=SomaBlog"
Then, inside the <vs:TrayGroupItem> element, you can add the following element tag for the user control. Note that if there is an error within the user control, it will fail silently without catching exceptions.
<soma:UserControl1 />
[bookmark: _Toc207519386]7.	Save the project.
After you save the project, you do not have to rebuild. When you view the Start Page, you should see the new button. Click it to see the associated content.
You could have added XAML directly to StartPage.xaml, but by using a separate WPF user control, you can make your extension more portable and more easily write code behind the XAML.

[bookmark: _Toc210113824][bookmark: _Toc210728654]Visual Studio 2010 Editor
This section contains the following walkthroughs.
· What's New in the Visual Studio 2010 Editor
· Walkthrough – How to Adapt to the Visual Studio 2010 Editor
· Walkthrough – How to Add Syntax Coloring in the Visual Studio 2010 Editor
· Walkthrough – How to Highlight Text in the Visual Studio 2010 Editor
· Walkthrough – How to Provide Intellisense in the Visual Studio 2010 Editor
· Walkthrough – How to Use a Shell Command to Add a Comment Adornment in the Visual Studio 2010 Editor

[bookmark: _What's_New_in_1][bookmark: _Toc210728655]What's New in the Visual Studio 2010 Editor
Introduction
The Visual Studio 2010 text editor is a completely new component, but it has essentially the same functionality and user experience as the Visual Studio 2008 text editor.
New Features in the Visual Studio 2010 Editor
Some of the new features in the Visual Studio 2010 text editor are:
· Line highlighting. To set the editor to highlight the current line, click Tools, click Options, expand Environment, click Fonts and Colors, and then select the line-highlight option in the Display items list.
· Zooming. To zoom in or out in a document window, press CTRL and then scroll the mouse wheel.
Improvements in the Visual Studio 2010 Editor
If you work with large files, or files with long lines, you can expect to see improved performance with the Visual Studio 2010 editor.
New APIs for the Visual Studio 2010 Editor
The API set for manipulating the functionality of the editor and extending the capabilities of the editor is entirely new, and is written entirely in managed code. For more information about extending the editor, see the API reference in the Visual Studio SDK and the walkthroughs that follow.
[bookmark: _Walkthrough:_A_Lap][bookmark: _Walkthrough:_How_to_2][bookmark: _Toc210728656]Walkthrough: How to Adapt to the Visual Studio 2010 Editor
Introduction
The Visual Studio 2010 editor offers many features that you can use from your existing code components. The following instructions show how to consume editor services directly from a Managed Extensibility Framework (MEF) component or a non-MEF component, for example a VSPackage. It also shows how to use adapters, or shims, to get the services of the Visual Studio 2010 editor in both managed and unmanaged code.
Getting Visual Studio 2010 Editor Services from an MEF Component
If your existing code is an MEF component, you can use MEF metadata to consume Visual Studio 2010 editor components.
To consume Visual Studio 2010 editor components from a MEF component
1.	Add a project reference to ComponentModel.dll in the ..\Common7\IDE\PrivateAssemblies\ folder of your Visual Studio 2010 installation. Make sure that CopyLocal is set to false.
2.	Add the [Import] attribute to your service interface, as follows:
[Import]
ITextBufferFactoryService textBufferService = null;
3.	When you have obtained the service, you can consume any one of the Visual Studio 2010 editor components.
4.	When you have compiled your assembly, put it in the …\Common7\IDE\Components\ folder of your Visual Studio 2010 installation.
Note For more information about MEF, see the documentation at http://codeplex.com/MEF.
Getting Visual Studio 2010 Editor Services from a Non-MEF Component
If you have an existing managed code component that does not use the MEF and you want to use the services of the Visual Studio 2010 editor, you must add a reference to the assembly that contains the ComponentModelHost VSPackage and get its SComponentModel service.
To consume Visual Studio 2010 editor components from a non-MEF component
1.	Add a reference to the Microsoft.VisualStudio.ComponentModelHost.dll assembly in the ..\Common7\IDE\ folder of your Visual Studio 2010 installation. Make sure that CopyLocal is set to false.
2.	Add a private IComponentModel member to the class in which you want to use Visual Studio 2010 editor services, as follows:
using Microsoft.VisualStudio.ComponentModelHost;
....
private IComponentModel componentModel;
3.	Instantiate the component model in the initialization method for your component:
componentModel =
 (IComponentModel)Package.GetGlobalService(typeof(SComponentModel));
4.	After this, you can get any one of the Visual Studio 2010 editor services by calling the GetService<T>() method for the service you want:
textBufferFactoryService =
 componentModel.GetService<ITextBufferFactoryService>();
Creating Adapters in Managed Code
You can adapt some Microsoft.VisualStudio.TextManager.Interop interfaces to Visual Studio 2010 editor interfaces by using adapters. The following adapters are available:
· VsTextBufferAdapter
· VsTextViewAdapter
· VsCodeWindowAdapter
To use these adapters, you must add a reference to the Microsoft.VisualStudio.Editor.dll assembly.
To create an adapter for IVsTextView
1.	Add a reference to Microsoft.VisualStudio.Editor.dll in the ..\Common7\IDE\Components\ folder of your Visual Studio 2010 installation. Make sure that CopyLocal is set to false.
2.	Instantiate the IVsEditorAdaptorsFactoryService, as follows:
using Microsoft.VisualStudio.Editor;
....
IVsEditorAdaptersFactoryService adapterFactoryService = ComponentManager.GetService<IVsEditorAdaptersFactoryService>();
3.	Call the CreateTextViewAdapter() method.
Creating Adapters in Unmanaged Code
All adapter classes are registered to be local co-creatable, and can be instantiated by using the VsLocalCreateInstance() function.
To create an adapter for IVsTextBuffer
1.	All adapters are created with the GUIDs defined in the vsshlids.h file in the ..\src\vscommon\inc\ folder of your Visual Studio 2010 installation.
2.	To create an instance of VsTextBufferAdapter, use the following code:
IVsTextBuffer *pBuf = NULL;
VsLocalCreateInstance(CLSID_VsTextBufferAdapter, NULL, CLSCTX_INPROC_SERVER, IID_IVsTextBuffer, (void**)&pBuf);
Using the Visual Studio 2010 Editor Directly from Unmanaged Code
The Microsoft.VisualStudio.Platform.VSEditor and Microsoft.VisualStudio.Platform.VSEditor.Interop namespaces expose COM-callable interfaces as IVx* interfaces. For example, the Microsoft.VisualStudio.Platform.VSEditor.Interop.IVxTextBuffer interface is the COM version of the Microsoft.VisualStudio.Text.ITextBuffer interface. From the IVxTextBuffer you can get access to the buffer snapshots, modify the buffer, listen for text change events on the buffer, and create tracking points and spans. The following procedure shows how to access an IVxTextBuffer from a IVsTextBuffer.
To get an IVxTextBuffer
1.	The definitions for the IVx* interfaces are in the VSEditor.h file of your Visual Studio 2010 installation.
2.	The following code instantiates a text buffer by using the IVsUserData->GetData() method. In the following code, pData is a pointer to an IVsUserData object.
DEFINE_GUID(GUID_VxTextBuffer, 0xbe120c41, 0xd969, 0x42a4, 0xa4, 0xdd, 0x91, 0x26, 0x65, 0xa5, 0xbf, 0x13);
IVxTextBuffer* pVxBuffer = NULL;
{
 CComVariant vt;
if (SUCCEEDED(pData->GetData(GUID_VxTextBuffer, &vt)) &&
 (vt.Type == VT_UNKNOWN) && (vt.punkVal != NULL))
 {
 vt.punkVal->QueryInterface(IID_IVxTextBuffer, (void**)&pVxBuffer);
 }
}

[bookmark: _Walkthrough:_How_to_3][bookmark: _Toc210728657]Walkthrough: How to Add Syntax Coloring in the Visual Studio 2010 Editor
Introduction
You can add many different visual effects to the Visual Studio 2010 editor by creating Managed Extensions Framework (MEF) components. This walkthrough shows how to add syntax coloring.
Prerequisites
To follow this walkthrough, find the TextColoringSample solution in the
 C:\Users\Public\Documents\CTPWalkthroughs\Visual Studio\Samples folder.
Creating a Classification Type
The first step in providing coloring is to define a specific classification type. Classification types are the sets of words that are used in a language. For example, classifications for the English language include "noun", "verb", and "adjective", and classifications for the C# language include "keyword", "comment", and "identifier".
To create a classification type
1.	Create a subclass of Microsoft.VisualStudio.Text.ClassificationType, and name it WordClassificationType.
2.	In the constructor for WordClassificationType, set its Name property to "word".
3.	Export this classification type by using the MEF [Export] attribute, as follows:
[Export(typeof(ClassificationTypeDefinition))]
internal sealed class WordClassificationType : ClassificationTypeDefinition
{
 public WordClassificationType()
 {
 Name = "word";
 }
}

Note For more information about MEF, see the documentation at http://codeplex.com/MEF.
Creating a Classification Type Format Definition
To set the appearance of the classification type you have just created, you must define a classification type format. You can change the font size, color, type, and background of the text in the specified classification type.
To define the classification type format
1.	Create a subclass of Microsoft.VisualStudio.Text.Classification.ClassificationFormatDefinition, and name it WordClassificationFormatDefinition.
2.	In the constructor for WordClassificationFormatDefinition, set its ForegroundBrush property to System.Windows.Media.Brushes.Red. The text defined in the classification type definition will be colored red.
3.	To export this classification format definition, use the [Export] attribute, the ClassificationType attribute, the Name attribute, and the Order attribute. The ClassificationType attribute associates this format definition to a classification type by means of its Name property.
[Export(typeof(ClassificationFormatDefinition))]
[ClassificationType(ClassificationTypeNames = "word")]
[Name("WordClassificationFormat")]
[Order]
internal sealed class WordClassificationFormatDefinition : ClassificationFormatDefinition
{
 public WordClassificationFormatDefinition()
 {
 ForegroundBrush = Brushes.Red;
 }
}

Providing a List of Words to Color
The next step is to define a set of words to color. Typically, the set of words in each classification type would be defined by a parser or another part of your application. However, this sample uses a hard-coded list.
To provide a list of words to color
1.	Create a class that implements the IWordListProvider interface that is provided in the sample project, and name it MyWordListProvider.
2.	Implement the GetWords() method by adding a list of words.
3.	Export this word list provider by using the MEF [Export] attribute.
[Export(typeof(IWordListProvider))]
internal sealed class MyWordListProvider : IWordListProvider
{
 public IEnumerable<string> GetWords()
 {
 return new List<string>(new string[] { "this", "body" });
 }
}
Implementing a Syntax Coloring Class
The class that actually implements syntax coloring in the sample is the Colorer class. It implements the Microsoft.VisualStudio.Text.Classification.IClassifier interface, which is responsible for classifying the text in the Microsoft.VisualStudio.Text.SnapshotSpan objects given to it by the text view.
To implement a syntax coloring class
1.	Create a class that implements the IClassifier interface, and name it Colorer.
2.	In this sample the Colorer constructor takes the following parameters:
· A Microsoft.VisualStudio.Text.ITextBuffer object, which contains the buffer with text to be classified.
· A Microsoft.VisualStudio.Text.Classification.IClassificationTypeRegistryService object, which contains the classifier types that are used to format the text.
· A System.ComponentModel.Composition.ImportInfoCollection of type IWordListProvider, which contains the list of words that correspond to the classifier types. ImportInfoCollection objects contain instances of components that should be delay-loaded. For more information, see the MEF documentation.
3.	The Colorer class implements the IClassifier method GetClassificationSpans(), which searches a given SnapshotSpan for instances of the words that are defined in the word list, and returns a list of Microsoft.VisualStudio.Text.Classification.ClassificationSpan objects, which correspond to instances of the words to be formatted. For more information, see the sample.
Creating a Classifier Provider
In addition to creating a class that implements IClassifier, you must also implement a classifier provider, which locates the classifier to be used for formatting the text.
To create a classifier provider
1.	Create a class that implements Microsoft.VisualStudio.Text.Classification.IClassifierProvider, and name it MyClassifierProvider.
2.	Implement the GetClassifier() method of the IClassifierProvider interface, which returns a new Colorer object.
Building and Testing the Syntax Coloring Sample
To test this sample, you just build the assembly and then paste a copy of it in the correct Visual Studio 2010 folder.
To build and test the syntax coloring sample
1.	Build the Syntax Coloring sample solution.
2.	Shut down Visual Studio.
3.	Put a copy of the built assembly in the …\Common7\IDE\Components\ folder of your Visual Studio 2010 installation. You can use the DeployTextColoringSample.cmd file in the solution directory to copy the assembly to the right location. Right-click the file and select Run as administrator.
Note The Visual Studio 2010 editor MEF components will recognize the MEF components of the sample after the assembly appears in the \Components\ folder.
4.	Reopen Visual Studio.
5.	Create a text file and type some text that includes the words "this" and "body".
6.	The words "this" and "body" should appear in red, and the other words should appear in the default font color.
7.	To remove this sample, delete the assembly from the …\Common7\IDE\Components\ folder of your Visual Studio 2010 installation. You can use the RemoveSample.cmd file to remove samples. Right-click the file and click Run as administrator.

[bookmark: _Walkthrough:_How_to_4][bookmark: _Toc210728658]Walkthrough: How to Highlight Text in the Visual Studio 2010 Editor
Introduction
You can add many different visual effects to the Visual Studio 2010 editor by creating Managed Extensibility Framework (MEF) components. This walkthrough shows how to highlight every occurrence of a string in a text file at the same time. For example, if a word occurs more than one time in a text file, and you position the cursor in one occurrence, every occurrence is highlighted.
Prerequisites
To follow this walkthrough, find the HighlightWordSample solution in the
 C:\Users\Public\Documents\CTPWalkthroughs\Visual Studio\Samples folder.
Implementing a Tagger
The first step in highlighting text is to implement the Microsoft.VisualStudio.Text.Tagging.ITagger<T> interface. This interface assigns, to a given text buffer, tags that provide text highlighting and other visual effects.
To implement a tagger
1.	Create a class that implements ITagger<TextMarkerTag>, and name it HighlightWordTagger.
The HighlightWordTagger class in this sample is constructed to have the following parameters:
· A Microsoft.VisualStudio.Text.Editor.ITextView object, which corresponds to the current text view.
· A Microsoft.VisualStudio.Text.ITextBuffer object, which corresponds to the text buffer that underlies the text view.
· A Microsoft.VisualStudio.Text.ITextSearchService object, which has methods for searching within text snapshots.
· A Microsoft.VisualStudio.Text.Editor.ITextStructureNavigator object, which has methods for navigating within text spans.
The constructor also adds two event handlers to the ITextView object, ViewLayoutChanged and CaretPositionChanged, both of which call the UpdateAtCaretPosition method.
2.	UpdateAtCaretPosition method adds the UpdateWordAdornments callback to the thread queue. This callback finds every word in the text buffer that is identical to the word where the cursor is positioned and constructs a list of Microsoft.VisualStudio.Text.SnapshotSpan objects that correspond to the occurrences of the word. It then calls SynchronousUpdate, which raises the TagsChanged event.
3.	You must implement the GetTags() method. In the sample code this method takes a collection of Microsoft.VisualStudio.Text.SnapshotSpan objects, and returns an enumeration of tag spans. You should implement this method as a yield iterator, which enables lazy evaluation (that is, the set is evaluated only when individual items are accessed) of the set of tags. In the sample, the GetTags() method returns a Microsoft.VisualStudio.Text.Tagging.TagSpan object that has a "blue" Microsoft.VisualStudio.Text.Tagging.TextMarkerTag, which provides a blue background.
Creating a Tagger Provider
You must implement a Microsoft.VisualStudio.Text.Tagging.ITaggerProvider to create tagger objects. This class is a MEF component. Therefore, you must set the correct attributes so that this extension is recognized. For more information about MEF components and attributes, see the MEF documentation.
To create a tagger provider
1.	Create a class that implements Microsoft.VisualStudio.Text.Tagging.ITaggerProvider, and name it HighlightWordTaggerProvider.
2.	Add the following three MEF attributes:
[Export(nameSource=typeof(ITaggerProvider))]
[ContentType="text"]
[TagType=typeof(TextMarkerTag)]
3.	Implement the CreateTagger<T> method to return an instance of HighlightWordTagger.
Note For more information about MEF, see the documentation at http://codeplex.com/MEF.
Building and Testing the Text Highlighting Sample
To test this sample, you just build the assembly and put a copy of it in the correct Visual Studio 2010 folder.
To build and test the text highlighting sample
1.	Build the Text Highlighting sample project.
2.	Shut down Visual Studio.
3.	Put a copy of the built assembly in the …\Common7\IDE\Components\ folder of your Visual Studio 2010 installation. You can use the DeployHighlightWordSample.cmd file in the solution directory to copy the assembly to the right location. Right-click the file and click Run as administrator.
Note The Visual Studio 2010 editor MEF components will recognize the MEF components of the sample after the assembly appears in the \Components\ folder.
4.	Restart Visual Studio.
5.	Create a text file and type some text in which the words are repeated, for example, "hello hello hello".
6.	Position the cursor in one of the occurrences of "hello". Every occurrence should be highlighted.
7.	Use the RemoveSample.cmd file in the solution directory to clean up the deployed assembly from the …\Common7\IDE\Components\ folder. Right-click the file and click Run as administrator.
[bookmark: _Walkthrough:_How_to_5][bookmark: _Toc210728659]Walkthrough: How to Provide IntelliSense in the Visual Studio 2010 Editor
Introduction
You can implement IntelliSense in the Visual Studio 2010 editor by creating a Managed Extensibility Framework (MEF) component.
This walkthrough shows how to implement two IntelliSense controllers, one for method signature descriptions and one for statement completion. IntelliSense controllers are responsible for listening to the events that trigger completion, displaying the appropriate list, and removing the display when it is committed (that is, when a selection has been made) or dismissed. This walkthrough also shows how to implement IntelliSense controller providers, which create the IntelliSense controllers for individual text views.
When you run the sample code, pressing CTRL+J or "." shows the list of methods; you can dismiss the list by pressing ESC. Pressing CTRL+SHIFT+SPACEBAR or "(" shows the list of parameters; you can dismiss the list by pressing ESC. The displayed lists of methods and parameters are static lists that are defined in the Helpers class.
Prerequisites
To follow this walkthrough, find the IntellisenseSample solution in the
C:\Users\Public\Documents\CTPWalkthroughs\Visual Studio\Samples folder.
Implementing an IntelliSense Controller
IntelliSense controllers are the classes that are responsible for the display and dismissal of IntelliSense completion lists.
To implement an IntelliSense controller
1.	Create a class that implements Microsoft.VisualStudio.Language.Intellisense.IIntellisenseController and name it SampleStatementCompletionController.
2.	In the constructor, set up the following private members:
· A Microsoft.VisualStudio.Text.Editor.ITextView object that represents the text view in which IntelliSense is to be displayed.
· A list of Microsoft.VisualStudio.Text.ITextBuffer objects that represent the underlying text buffer.
· A reference to the Microsoft.VisualStudio.Language.Intellisense.ICompletionBrokerMapService, which controls all completion components.
· A reference to the Microsoft.VisualStudio.Language.Intellisense.ICompletionSession object, which controls displaying and dismissing the completion text.
3.	The constructor in this sample also adds two event handlers, one to the IntellisensePreKeyProcessor.PreprocessKeyDown event, and the other to the IntellisensePostKeyProcessor.PostprocessTextInput event.
4.	This class implements only the IIntellisenseController.Detach() method, which removes the previous two event handlers.
5.	This class implements the event handlers OnPreprocessKeyDown, which identifies the CTRL+J or "." keys that trigger statement completion and the ESC key, which triggers dismissal. For more information, see the Implementing Key Event Handlers section of this walkthrough.
The SampleSignatureController class is implemented just like the SampleStatementCompletionClass, except for the trigger keys it handles.
Implementing an IntelliSense Controller Provider
IntelliSense controller providers are responsible for offering IntelliSense components by using the MEF [Export] attribute, and for creating IntelliSense controllers for text buffers.
Note For more information about MEF, see the documentation at http://codeplex.com/MEF.
To implement an IntelliSense controller provider
1.	Create a class that implements Microsoft.VisualStudio.Language.Intellisense.IIntellisenseControllerProvider, and name it SampleStatementCompletionControllerFactory.
2.	Add the following MEF attributes to the class:
[Export(typeof(IIntellisenseControllerProvider))]
[Name("Sample Completion Controller")]
[Order(Before = "Default Completion Controller")]
[ContentType("text")]
3.	Implement the method TryCreateIntellisenseController, which looks for an ICompletionBrokerMapService object for a given ITextView and then creates an instance of the SampleStatementCompletionController class. For more information, see the SampleCompletionControllerProvider class (in the file Connector.cs) in the sample solution.
The class SampleSignatureHelpControllerFactory is implemented just like the class SampleStatementCompletionControllerFactory.
Defining IntelliSense Content
To supply IntelliSense content, you must implement at least the Microsoft.VisualStudio.Language.Intellisense.ICompletion and Microsoft.VisualStudio.Language.Intellisense.ICompletionSource interfaces. In this sample, the IntelliSense content that is displayed is a pair of static lists. In more fully functional examples, this content would be provided by a parser or another part of the application.
To define IntelliSense content
1.	Create a class that implements Microsoft.VisualStudio.Language.Intellisense.ICompletionSource and name it SampleStatementCompletionSource.
2.	Implement the GetCompletions() method, which returns a ReadOnlyCollection<ICompletion> that contains the set of completions. In the sample, this is a static list that is defined in the Helpers class. For more information, see the SampleStatementCompletionSource.GetCompletions() method.
3.	In a more realistic example, the TryGetBestMatch() method would be implemented to pick the best completion for the current context. In the sample, this method does nothing.
4.	Create a class that implements Microsoft.VisualStudio.Language.Intellisense.ICompletion and name it SampleStatementCompletion.
5.	The constructor of this class should set the following parameters:
· ICompletionSource, in this case SampleStatementCompletionSource.
· Microsoft.VisualStudio.Text.ITrackingSpan, which is the text at which IntelliSense should be displayed.
· Microsoft.VisualStudio.Text.Classification.IClassificationType, which is the type of text to which the IntelliSense applies.
· Display text, which is the text to be displayed.
· Insertion text, which is the text that is inserted when it is selected.
The class SampleSignatureCompletion is implemented mostly like the class SampleStatementCompletion. One difference is that SampleSignatureCompletion depends on implementations of Microsoft.VisualStudio.Language.Intellisense.ISignature and Microsoft.VisualStudio.Language.Intellisense.IParameter to set up IntelliSense content.
Implementing the Key Event Handlers
The sample code contains an implementation of processors (together with the classes IntellisensePostKeyProcessor, IntellisensePreKeyProcessor, and the respective processor factories). This implementation is currently functional but is subject to change in later iterations.
Building and Testing the Intellisense Sample
To test this sample, you just build the assembly and then put a copy of it in the correct Visual Studio 2010 folder.
To build and test the IntelliSense sample
1.	Build the IntelliSense sample project.
2.	Exit Visual Studio.
3.	Put a copy of the built assembly in the …\Common7\IDE\Components\ folder of your Visual Studio 2010 installation. You can use the DeployIntellisenseSample.cmd file in the solution directory to copy the assembly to the right location. Right-click the file and click Run as administrator.
Note The Visual Studio 2010 editor MEF components will recognize the MEF components of the sample after the assembly appears in the \Components\ folder.
4.	Restart Visual Studio.
5.	Create a text file and type some text, and then press CTRL+J. The list of methods should appear. Dismiss the method list by pressing ESC.
6.	Press CTRL+SHIFT+SPACEBAR. The method signature and the method description should appear in a tooltip window. Dismiss the parameter list by pressing ESC.
7.	Use the RemoveSample.cmd file in the solution directory to clean up the deployed assembly from the …\Common7\IDE\Components\ folder. Right-click the file and click Run as administrator.
[bookmark: _Walkthrough:_How_to_6][bookmark: _Toc210728660]Walkthrough: How to Use a Shell Command to Add a Comment Adornment in the Visual Studio 2010 Editor
Introduction
You can implement features in the Visual Studio 2010 editor from a typical VSPackage. The following walkthrough shows how to add a comment adornment to a text view in the Visual Studio 2010 editor by invoking a Visual Studio shell command.
Adornments are a feature of the Visual Studio 2010 editor that add visual effects to text, either embedded in the text view itself (for example, a colored rectangle behind the text) or in a pop-up window (for example, tooltips). Embedded adornments, such as the comment adornment in this walkthrough, are displayed in layers corresponding to the Z-order of the displayed elements. There are three built-in adornment layers: the text, the caret (or cursor), and the selection. When you create an adornment, you must specify the relationship of your adornment to other adornments.
Prerequisites
To follow this walkthrough, you must install the Visual Studio 2010 SDK. The installation executable is C:\Users\Public\Documents\CTPWalkthroughs\Visual Studio\SDK\vssdk_sfx.exe.
Adding a Menu Command
First, create a VSPackage that has a menu command. The CommentAdornment solution in the C:\Users\Public\Documents\CTPWalkthroughs\Visual Studio\Samples folder includes the elements that are required to add a command named Add Comment Adornment to the Tools menu.
Defining an Adornment Layer
To add a new adornment, you must first define an adornment layer.
To define an adornment layer
1.	Declare a public field of type Microsoft.VisualStudio.Text.Editor.AdornmentLayerDefinition. In the sample you can find this declaration in the Connector class
2.	This definition is a Managed Extensibility Framework (MEF) component. Therefore, you must add the following attributes:
[Name("CommentAdornmentLayer")]
[Order(After = "Selection", Before = "Text")]
[Export(typeof(AdornmentLayerDefinition))]

The [Order] attribute defines the relationship of this adornment layer to the other text view layers (text, caret, and selection). The [Export] attribute means that the class is available for consumption.
Note For more information about MEF, see the documentation at http://codeplex.com/MEF.
Implementing a Comment Adornment
When you implement a comment adornment, you must also implement a comment adornment provider and a comment adornment manager. The comment adornment provider listens to Change events on the underlying text buffer and deletes comment adornments when the underlying text is deleted. For more information, see the CommentAdornmentProvider class in the sample project.
The comment adornment manager creates the visual display of the adornment and adds it to the adornment layer. In addition, it listens to the LayoutChanged event and Closed event of the text view so that it can move the adornment when the layout of the view changes or delete the adornment when the view is closed. It also listens to the CommentsChanged event that is fired by the comment adornment provider when comments are added or removed. For more information, see the CommentAdornmentManager class in the sample project.
The comment adornment itself contains only the text of the adornment. In the sample, the text consists of a field for the author and another field for the text. For more information, see the CommentAdornment class.
Implementing a Text View Service
To add the adornment to a text view, you must create a TextViewService that is called whenever a text view is created.
To implement a text view service
1.	Declare a method that creates a text view service. This service creates an instance of the comment adornment manager for each Microsoft.VisualStudio.Text.Editor.IWpfTextView that is created. For more information, see the CreateViewService() method of the Connector class in the sample.
2.	The TextViewService is also a MEF component that exports itself, as shown in the following code:
[ContentType("text")]
[Export(typeof(TextViewService))]
Public void CreateViewService(IWpfTextView textView, IEnvironment context)

The [ContentType] attribute specifies the type of content to which this component applies, in this case, the text type. The text type is the base type for all non-binary file types, so that nearly every text view that is created will be of this type.
Using the Menu Command to Add the Comment Adornment
You can use the menu command to create a comment adornment by implementing the method MenuItemCallback of the VSPackage.
To use the menu command to add the comment adornment
1.	Add a reference to the Microsoft.VisualStudio.Editor assembly in the ..\Common7\IDE\Components\ folder of your Visual Studio 2010 installation.
2.	In the VSPackage.MenuItemCallback method, you must get the SVsTextManager of the Visual Studio shell to get the active IVsTextView.
IVsTextManager txtMgr =
 (IVsTextManager)GetService(typeof(SVsTextManager));
IVsTextView vTextView = null;
int mustHaveFocus = 1;
txtMgr.GetActiveView(mustHaveFocus, null, out vTextView);
3.	If this text view is an instance of a Visual Studio 2010 editor text view, you can cast it to the IVsUserData interface and then get the Microsoft.VisualStudio.Text.Editor.IWpfTextViewHost and its associated Microsoft.VisualStudio.Text.Editor.IWpfTextView.
IVsUserData userData = vTextView as IVSUserData;
if (userData == null)
{
 Console.WriteLine("No Visual Studio 10 text view is currently open");
 Return;
}
IWpfTextViewHost viewHost;
object holder;
Guid guidViewHost = DefGuidList.guidIWpfTextViewHost;
userData.GetData(ref guidViewHost, out holder);
viewHost = (IWpfTextViewHost)holder;
4.	You can use the IWpfTextViewHost to call the Connector.Execute() method, which gets the comment adornment provider and adds the adornment. For more information about the menu callback, see the CommentAdornmentPackage class. For more information about how to add the adornment, see the Execute() method of the Connector class.
Building and Running the Comment Adornment Sample
To build and run this sample, follow the instructions below.
To build and test the syntax coloring sample
1.	Build the comment adornment sample solution. The solution creates an assembly named CommentAdornment.dll.
2.	Exit Visual Studio.
3.	Put a copy of the CommentAdornment.dll assembly in the …\Common7\IDE\Components\ folder of your Visual Studio 2010 installation.
Note The Visual Studio 2010 editor MEF components will recognize the MEF components of the sample after the assembly appears in the \Components\ folder.
· Open the CommentAdornment.pkgdef file (found in the …CommentAdornment\bin\Debug folder) and set the CodeBase value to $RootFolder$\\Common7\\IDE\\Components\\CommentAdornment.dll.
4.	Put a copy of the CommentAdornment.pkgdef file in the …\Extensions directory of your Visual Studio 2010 installation.
5.	You can use the DeployCommentAdornmentSample.cmd file to deploy the assembly and the .pkgdef file. Right-click the file and click Run as administrator.
6.	Restart Visual Studio.
7.	Create a text file. Type some text and then select it.
8.	On the Tools menu, click Add Comment. You will see a balloon on the right side of the text window containing text like the following:
YourUserName
Fourscore…
9.	Use the RemoveSample.cmd file in the solution directory to clean up the deployed assembly and the .pkgdef file. Right-click the file and click Run as administrator.

[bookmark: _Toc210113825][bookmark: _Toc210728661]XML Schema Designer Experience
This section contains the following walkthroughs.
· Xml Schema Designer Walkthrough

[bookmark: _XML_Schema_Designer][bookmark: _Toc210728662]XML Schema Designer Walkthrough
The goal of this walkthrough is to provide an overview of the new XML Schema Designer including:
· Exploring the views provided by the designer.
· Showing how the designer can be used to explore and search XML schema sets.
· Showing how the designer can be used to gather statistics for the XML schema set.
· Showing how the designer can be used to see the content model of individual nodes.
· Showing how the designer can be used to see an overview of the schema, including visualizing the schema set type hierarchy and type to element relationships.
Tasks illustrated in this walkthrough include:
· How to open a schema set in the XML Schema Designer.
· How to use the XML Schema Explorer to get a hierarchical view of a schema set, search, sort, and navigate it.
· How to use built-in quickstarts and statistics on the Start View.
· How to use the Graph View to get an overview of a schema set.
· How to use the Content Model View to see the compiled content model for a node.
· How to generate sample xml for a global element and compare that sample xml to the content model of the element.
Prerequisites
Before starting this walkthrough, ensure you have access to the BrainML schema set at C:\users\Public\documents\CTPWalkthroughs\Visual Studio\Samples\Brainml. This will include the following XSD files: brainmetal.xsd, brainml.xsd, citation.xsd, xlink.xsd. This walkthrough can be used to guide in exploring any schema set but is tailored to BrainML.
To open a schema set in the XML Schema Designer
1.	On the File menu, click Open then File.
2.	Navigate to C:\users\Public\documents\CTPWalkthroughs\Visual Studio\Samples\Brainml and choose the brainml.xsd file.
3.	The designer will load the xsd file and all xsd files related to it (imported or included) into the XML Schema Explorer window as well as open the Start View for the schema set.
To explore and search your schema set using the XML Schema Explorer
Collapse the brainml.xsd file node. Note the brainml.xsd schema set is composed of five .xsd files, all represented in the treeview (See Figure 1).
[image:]
Figure 1
2.	Expand the brainml.xsd node and use the Grouping and Sorting Options to change the sort order of the document to Document Order. Using the different Grouping and Sorting Options allows you to filter, group, and sort schema set nodes, helping with familiarization with the schema set (See Figure 2).
[image:]
Figure 2
3.	Search for experiment using the search textbox. Note search results are shown in the search summary bar, represented as tickmarks on the scrollbar, and highlighted in the explorer treeview. The tickmarks can be used to navigate directly to nodes found in the search (See Figure 3).
[image:]
Figure 3
Use the built-in quickstarts and statistics on the Start View in conjunction with the Graph View to help learn the structure of the schema set
1.	Note the statistics for the schema set on the Start View under Schema Set Statistics. These provide a quick way to analyze the contents of a schema set and to judge the set’s complexity.
[image:]
2.	Click the Show all global types link under Schema Set Quickstart to run a query over the schema set for all global types in the set.
[image:]
3.	The global types in the schema set are highlighted in the Schema Explorer. Click the Add to design surface button to add all global types to the designer surface (See Figure 4).
[image:]
Figure 4
4.	Note that all global types are shown in the Graph View. The Graph View offers a 2D view of types, elements and their relationships (see Figure 5).
[image:]
Figure 5
To see the content model of a specific node
1.	Right-click on the person-type node on the Graph View and select Show in Content Model View. The content model for person-type is opened in the Content Model View, showing you the ‘compiled view’ of the schema node (see Figure 6).
[image:]
Figure 6
2.	Explore the content model by expanding and collapsing its contents by double-clicking on items in the node.
To generate sample XML for a global element
1.	Right-click on the person-type node on the Content Model View and choose ‘Show in Schema Explorer’. This selects the node in the Schema Explorer.
2.	Right-click on the node in the Schema Explorer and choose ‘Show All References’. This shows all nodes that reference the type (see Figure 7).
[image:]
Figure 7
3.	Select the author element (two nodes below the person-type) and drag/drop it onto the design surface. This allows you to see the content model for the element.
4.	Select the author element in the schema explorer again. Right-click on it and select ‘Generate Sample XML’. This generates a sample XML instance document that conforms with the author element content model specification.
5.	Tile the new document window horizontally so you can compare the content model of the author element and the sample XML generated (see Figure 8).
[image:]
Figure 8
Conclusion
This walkthrough provides a brief introduction to the features included in the CTP for the XML Schema Designer, including a hierarchal view over the schema set, the ability to search/query/sort/filter the set, the ability to view nodes and relationships in the set in a 2D diagram, and the ability to view the content model for individual nodes in the set.

[bookmark: _Toc210113822][bookmark: _Toc210728663][bookmark: _Toc210113826]Multi-monitor Support
This section contains the following walkthroughs.
· What's New in Tool and Document Windows
· Walkthrough: How to Float Document and Tool Windows Outside the IDE

[bookmark: _What's_New_in][bookmark: _Toc210728664]What's New in Tool and Document Windows
Visual Studio 2010 CTP lets you customize your environment by dragging tool windows and document windows outside the main window of the IDE. For example, you can drag Solution Explorer or the Properties window out of the main window to make more room on your design surface, or drag the code editor out so that you can view it and the designer side by side. The views refresh instantly, so that when you change a form in design view, you can see the change reflected in code view right away. To return any window to its earlier docked location, just double-click its title bar. To explore this new behavior, see Walkthrough: How to Float Document and Tool Windows Outside the IDE

[bookmark: _Walkthrough:_How_to][bookmark: _Toc210728665]Walkthrough: How to Float Document and Tool Windows Outside the IDE
Introduction
In Visual Studio 2010, you can move document windows and tool windows outside the borders of the integrated development environment (IDE) main window. This gives you more flexibility in how you organize your development and debugging work, and how you view designers. This functionality is a feature of the new Visual Studio Shell, which uses Windows Presentation Foundation (WPF).
This walkthrough demonstrates how to float document windows outside the IDE, interact with them, and return them to the tabbed group.
Note With Visual Studio 2010 CTP, the migration of features to the WPF shell is still in early development and performance and UI behaviors have not yet stabilized. As a consequence, neither will be fully representative of the final product, and exploring beyond the bounds of this walkthrough is not recommended.
Enable the WPF Shell
First, make document windows floatable by creating the following registry key and setting its value to 1:
HKEY_CURRENT_USER\Software\Microsoft\VisualStudio\10.0\General\EnableWPFShell (REG_DWORD) = 1
When you start Visual Studio, it will check this registry key. If the value is 1, Visual Studio will use the new WPF-based shell.
Note Users are strongly advised to disable the WPF Shell after completing this walkthrough, as it will prevent other walkthroughs from working as described. You can do this by either setting the EnableWPFShell key to a value of 0, or by deleting it entirely, and then restarting Visual Studio.
[bookmark: prerequisitesToggle]Create a Windows Application Project
This walkthrough uses a basic Windows Forms project to demonstrate floating window functionality.
To create a Windows application project
1.	On the File menu, point to New and then click Project.
2.	In the Project types list, select Visual C#.
3.	In the templates list, select Windows Forms Application.
4.	In the Name box, type “Test1”.
5.	Click OK.
6.	Close any floating tool windows that open with the new project.
Drag Document Windows Outside of the IDE
Floating windows let you see at the same time how changes made in one view of a file affect another view of the file. This section demonstrates how to work with floating document windows, such as how you can add a control to a form in design view and immediately see how the code behind the form is updated in the editor view when the control is added.
To organize the environment by using a floating document window
1.	If Visual Studio is maximized, restore it to a floating window.
2.	If the Solution Explorer tool window is not visible then select Solution Explorer from the view menu, and dock it to the right of the main window.
3.	In Solution Explorer, in the Test1 project, right-click Form1.cs and then click View Code to open it in the editor.
4.	Click the Form1.cs tab at the top of the editor pane, drag it out of the VS Shell document group, place it next to the VS Shell, and resize it as appropriate for your environment.
To design a form and view its code side by side
1.	In the Test1 project, double-click Form1.cs to bring the form1.cs designer into focus.
2.	Bring up the toolbox tool window by selecting toolbox from the view menu, and dock it to the left of the main window.
1. Expand the common controls group, and double-click on button to place the control on the form.
4.	Double-click the button control on the form. In the floating document window, notice that the code behind the form is updated with the Button1_click handler.
To dock a floating document window
1. Double-click the title bar of the code window. It returns to the tab document group.
1. Drag the form1.cs designer out of the Visual Studio environment, resize as appropriate and then double-click to return it to the tab group.
1. Drag the Solution Explorer tool window out of the Visual Studio environment, and then double-click to return it to its last docked location.
You can move any Visual Studio tool window or document window in the same fashion.
Note When closing the Visual Studio IDE, you may see an error dialog which states that Visual Studio 10 has stopped working. If this happens, close the dialog, and disable or delete the EnableWPFShell reg key. Visual Studio will behave normally on restart.

[bookmark: _Toc210728666]
New Coding Experiences
[bookmark: _Toc210113827][bookmark: _Toc210728667]Coding in Managed Languages
This section contains the following walkthroughs.
· What’s New in Managed Languages for Visual Studio 2010 CTP
· Walkthrough: Call Hierarchy
· Walkthrough: Dynamic Programming in C#
· Walkthrough: TDD Support with the Generate From Usage Feature
· Walkthrough: Office Programmability in C# and Visual Basic
· Walkthrough: Quick Search for Files and Symbols

[bookmark: _What's_New_in_2][bookmark: _Toc210728668]What's New in Managed Languages for Visual Studio 2010 CTP
The Visual Studio 2010 CTP introduces a number of innovative new features for Visual Basic and C#, and for the integrated development environment (IDE).
Visual Basic Language
	Feature
	Description

	Auto-Implemented Properties
	Visual Basic enables you to declare standard properties in a single line.

	Collection Initializers
	Visual Basic introduces a shortened syntax for creating an array or collection and populating it with an initial set of values.

	Implicit Line Continuations
	Explicit line continuations are no longer necessary in many frequently used statements.

	No-PIA
	Visual Basic supports easier deployment with COM objects. Instead of deploying primary interop assemblies (PIAs) with your application, you can embed interop types directly in your assembly. This makes deployment significantly easier, and may reduce memory usage because only the types that your application uses are included.

	Statements in Lambda Expressions
	Lambda expressions are expanded to include a single-line Sub version that allows a statement in the body, in addition to multiline versions for both Sub and function lambda expressions.

C# Language
	Feature
	Description

	Dynamic Types
	[bookmark: OLE_LINK1][bookmark: OLE_LINK2]C# 4.0 introduces support for late binding to dynamic types, such as those defined in JScript and IronPython libraries. This enables many new scenarios, including simplified access to the HTML DOM in Silverlight applications.

	No-PIA
	C# 4.0 supports easier deployment with COM objects. Instead of deploying primary interop assemblies (PIAs) with your application, you can embed interop types directly in your assembly. This makes deployment significantly easier, and may reduce memory usage because only the types your application uses are included.

	Office Programmability
	C# 4.0 supports named and optional parameters, and optional ref modifiers when calling COM methods. This greatly simplifies Microsoft Office programming.

IDE
	Feature
	Description

	Background Compilation
	C# 4.0 extends background compilation so that top-level constructs are included.

	Call Hierarchy
	The Code Editor supports direct navigation from any member in a solution to the members that call it and to the members that it calls. (Implemented only in C# for this CTP.)

	Generate from Usage
	The Code Editor generates new types and members in the background as you write code that references them.

	Highlight Reference
	The Code Editor includes a new feature that highlights all references for a particular identifier when you place the cursor on it. CTRL+SHIFT+UP ARROW moves to the previous reference for the selected identifier. CTRL+SHIFT+DOWN ARROW moves to the next reference for the selected identifier. In Visual Basic, highlighting also applies to related keywords in If and Select statements.

	Quick Search
	Visual Studio provides an easily accessible dialog box that enables you to search for files or for any program text in a solution, including symbols, comments, and XML documentation comments. Use CTRL+, (press CTRL and the comma key) to use this feature.

[bookmark: _Walkthrough:_Call_Hierarchy][bookmark: _Toc210728669]Walkthrough: Call Hierarchy
The following walkthrough demonstrates the new Call Hierarchy feature in Visual Studio 2010. Call Hierarchy is a tool that helps you to understand the flow of code execution in complex solutions and projects. By placing the cursor on a method, property, indexer, or constructor in the source code, and invoking Call Hierarchy through the shortcut menu or the keyboard shortcut CTRL+K, CTRL+T, you can view a tree of all the calls to and from the current member. Each method, property, and constructor in the Calls To and Calls From nodes has its own Calls To and Calls From subnode. For example, suppose a project has a method named GetCustomers, and one of the methods in its Calls To subnode is InitializeComponent. You can click InitializeCompoment to see what calls to or is called from it. In this way, you can follow the flow of execution either backward or forward, beginning from any specified method, property, or constructor in a solution.
Note that in Visual Studio 2010 CTP, Call Hierarchy is working only for C#. Visual Basic support will be added in a future beta version of Visual Studio 2010.
For convenience, this walkthrough uses the DinnerNow sample that is found on the same Virtual PC image that contains Visual Studio 2010 CTP. You can, of course, use the Call Hierarchy feature with any solution or project.
To open the sample solution
· The DinnerNow sample is located on the same Virtual PC image that contains Visual Studio 2010 CTP version. Locate the file and, if necessary, unzip it to a location of your choice.
To display the Call Hierarchy window
1.	Navigate to the DinnerNow – Management folder and double-click the .sln file of the same name.
2.	In Solution Explorer, double-click PSWorkflowMonitor.cs in the DinnerNow.Management.PS project.
3.	In the Code Editor, find the LoadWorkflowInstance method, place the cursor on the line that contains this method, right-click, and then click View Call Hierarchy.

Note that the View Call Hierarchy menu item is available only when the cursor is placed on the same line as a method, constructor, or property declaration or call site.
The following illustration shows the shortcut menu that appears when you perform these steps.
[image:]
The following illustration shows the initial contents of the Call Hierarchy window after you expand the top node.
[image:]
To navigate through tree nodes and source code
1.	Expand the Calls 'To LoadWorkflowInstance' node. There is one method that calls LoadWorkflowInstance, and that is LoadWorkflowMonitor. Note that this method in turn has its own Calls To and Calls From subnodes that enable you to navigate through the flow of code execution in the program.
2.	Right-click any node in the tree and then click Go To Definition to go to the source code location for that method in the Code Editor.
Note that the right pane of the Call Hierarchy window is the Details Pane, which shows all the call sites for the selected method. Double-clicking a call site will take you to that location in the source code file.
The following illustration shows Details Pane and the Call Sites column.
[image:]
To display the selected method in the Code Definition window (not available in Visual Studio 2010 CTP)
· Right-click the method and click Go To Definition, as shown in the following illustration:

[image:]
To create and delete Call Hierarchy trees
Sometimes Call Hierarchy trees become unwieldy to navigate. When this happens, you can create a new tree by selecting any branch node and making it into a new root.
1.	 Find the InitWorkflowConnection node in the Call Hierarchy tree, as shown in the following illustration:

[image:]
2.	Right-click the node and click Add As New Root. InitWorkflorConnection is now the root of a new tree, as shown in the following illustration:

[image:]

The Call Hierarchy tree does not automatically update itself to represent the current state of the call hierarchy. If the source code changes, you can right-click any Calls to or Calls From subnode and then click Refresh to update the tree, as shown in the following illustration:

[image:]
To change the scope of the Call Hierarchy search
· To select whether to display results from the current solution, the current project, or the current document, use the drop-down list box on the Call Hierarchy toolbar, as shown in the following illustration:

[image:]
To access Call Hierarchy from the Object Browser or Class View
· To access Call Hierarchy from the Object Browser or from the Class View window, right-click any method, property, or constructor, and then click View Call Hierarchy. The following illustration shows the Object Browser:

[image:]

[bookmark: _Walkthrough:_Dynamic_Programming][bookmark: _Toc210728670]Walkthrough: Dynamic Programming in C#
This walkthrough shows how the new Dynamic feature in C# 4.0 and Visual Basic 10.0 enables the natural use of object models that expect their host language to provide dynamic dispatch. This capability is demonstrated for two scenarios:
· Silverlight, demonstrating access to browser object models that expect JScript.
· IronPython, demonstrating access to libraries that are written for dynamic languages. Note that more advanced IronPython scenarios that involve hosting your own scripts with access to your application’s object model are beyond the scope of this walkthrough.
Note: The use of Dynamic with Office programming is demonstrated in the Office Programmability walkthrough.
Important: For this CTP release, the Dynamic feature is only functional when used from C# 4.0. The Visual Basic 10.0 code shown below will not work at this time. It provides a preview of what we expect the Dynamic feature to look like in Visual Basic when Visual Studio 2010 is released.
Prerequisites:
The Silverlight scenario uses the following resources:
· Silverlight 2 RTW runtime
· Silverlight 2 RTW SDK
· An administrator account. You must run Visual Studio 2010 as an administrator to work around a known issue with the Visual Studio 2010 C# compiler's output of the assembly metadata expected by Silverlight 2.
The IronPython scenario uses the following resources:
· IronPython 2.0 CTP Release
Silverlight Scenario
A developer wants to integrate the Virtual Earth JScript control into an existing Silverlight application. The developer wants to script the control by using the new Dynamic feature that is available in C# 4.0 and Visual Basic 10.0. The application already displays a list of photos that are available on Flickr for a given subject. The developer wants to display these images in a way that also enables the user to see where the pictures were taken.
To set up the Silverlight project
1.	Download the SilverlightStarter project as part of the Visual Studio 2010 CTP Samples (available here). You must use this specific project because it includes some binaries that are necessary to enable the Dynamic feature in Silverlight 2 for the referenced types in the CTP Virtual PC image.
2.	Extract the SilverlightSolution folder to your C:\ root folder. If you choose a different location, you will need to change a project setting after you open the solution to run the application.
3.	Open the Visual Studio 2010 CTP as an administrator. On Windows Vista or Windows Server 2008, you must right-click the Visual Studio 2010 icon and click Run as administrator. Because of limitations of the CTP project that we are using to demonstrate the Dynamic feature with Silverlight 2, you must be running as an administrator when you compile the application. This will not be required with the release version of Visual Studio 2010 and future versions of Silverlight.
4.	Load the SilverlightSolution.sln solution from the extracted SilverlightSolution folder.
5.	If you chose to extract the SilverlightSolution folder to a location other than the C:\ root folder, you must change the project’s Start Action to load the correct .htm file when you run the application. To do this, right-click the Silverlight Solution project in Solution Explorer and click Properties. On the Debug tab, and change the Start browser with URL path to be the location of StartPage.htm in your solution folder. For example, if the path to SilverlightSolution is D:\SilverlightSolution, the URL would be D:\SilverlightSolution\SilverlightProject\bin\Debug\StartPage.htm.
6.	Build and run the application. Click Yes to continue debugging if prompted. You should see a Silverlight application in a browser. (The browser might appear behind the Visual Studio window.). You can click Get All to retrieve a list of photos, but you cannot yet see the images. Your Web page should look like the following illustration:

[image:]

If the browser shows a blank white page, make sure that you are running Visual Studio 2010 as an administrator and that you have adjusted the project’s Start Action to point to the right URL for StartPage.htm, as described above.
To enable dynamic access to the HTML DOM
7.	Add the following code to the top of the Page class:
Visual C# code
dynamic doc = HtmlPage.Document.AsDynamic();
dynamic win = HtmlPage.Window.AsDynamic();

Visual Basic code (preview)
Dim doc As Object = HtmlPage.Document.AsDynamic()
Dim win As Object = HtmlPage.Window.AsDynamic()

Notice that the variables are typed as dynamic. Expressions of type dynamic enable you to access arbitrary methods and properties that are resolved at run time instead of at compile time. This is known as dynamic dispatch (in Visual Basic, it is called late binding) and it allows concise access to the members of objects without static types that indicate what members they support, as is the case with JScript objects.
Also notice the call to the .AsDynamic extension methods on HtmlDocument and HtmlWindow, each of which return a wrapper that implements IDynamicObject. IDynamicObject is the interface that informs the dynamic dispatcher how to dispatch operations that are performed on an object. In this case, the wrapper is indicating that you actually want to pass method invocations and field access through to the JScript object model of the browser. In future releases, classes such as HtmlDocument and HtmlWindow will simply implement IDynamicObject themselves, letting you skip these wrappers and the .AsDynamic extension methods that return them.
8.	Add the following code to the top of the btnSearch_Click method:
Visual C# code
doc.Title = "Pictures of " + txtTag.Text;

Visual Basic code (preview)
doc.Title = "Pictures of " & txtTag.Text

Note: In C# 3.0, where doc would have a static type, the following code would be required, which passes Title as a string:
doc.SetProperty("Title", "Pictures of " + txtTag.Text);

To add the Virtual Earth JScript control
9.	In Solution Explorer, double-click the StartPage.htm file in the bin\Debug\SLDemo folder to edit the source code.
10.	Add the following line above the <title> tag:
<script type="text/javascript" src="http://dev.virtualearth.net/mapcontrol/mapcontrol.ashx?v=6.1"/>

This includes the script for the Virtual Earth JScript control.
11.	Add the following line just above the </body> tag:
<div id='myMap' style="position:absolute; top:40px; left:200px; width:550px; height:400px;"/>

This sets up a <div> where the control will be located.
That’s it! These are all the modifications that need to be made to the HTML. You can now instantiate the Virtual Earth control and manipulate it from C# code, not JScript, even though the <div> that will host it resides directly within the HTML page, outside of Silverlight.
To script Virtual Earth from C#
12.	In Solution Explorer, double-click the Page.xaml.cs file to edit the source code.
13.	Just above the definition for the nested class Item, add the following code to the body of the Page class:
Visual C# code
dynamic map = null;

void GetMap()
{
 map = win.New.VEMap("myMap");
 map.LoadMap();
}

void AddPin(Item item)
{
 dynamic loc = win.New.VELatLong(item.Latitude, item.Longitude);
 var pin = map.AddPushpin(loc);
 pin.SetTitle(item.Title);
 pin.SetDescription(item.Description);
 map.SetCenterAndZoom(loc, 7);
}

Visual Basic code (preview)
Dim map As Object = Nothing

Sub GetMap()
 map = win.New.VEMap("myMap")
 map.LoadMap()
End Sub

Sub AddPin(ByVal item As Item)
 Dim loc As Object = win.New.VELatLong(item.Latitude, item.Longitude)
 Dim pin = map.AddPushpin(loc)
 pin.SetTitle(item.Title)
 pin.SetDescription(item.Description)
 map.SetCenterAndZoom(loc, 7)
End Sub

Note: In C# 3.0, where doc, win, and map would have static types, the following code would be required for the body of AddPin, which includes an explicit cast from Object and method invocations that require the name of the method to be passed as strings:
ScriptObject loc = win.CreateInstance("VELatLong", item.Latitude, item.Longitude);
ScriptObject pin = (ScriptObject)map.Invoke("AddPushpin", loc);
pin.Invoke("SetTitle", item.Title);
pin.Invoke("SetDescription", item.Description);
map.Invoke("SetCenterAndZoom", loc, 7);

14.	Add the following call at the end of the Init method in the Page class:
Visual C# code
GetMap();

Visual Basic code (preview)
GetMap()

15.	Add the following call at the end of the lstPictures_SelectionChanged method in the Page class:
Visual C# code
AddPin(selected);

Visual Basic code (preview)
AddPin(selected)

16.	Build and run the project. You should now see a map on the right side of the application. When you click an item in the list, you should see a pushpin on the map. Rest the mouse pointer over the pushpin to cause an image and text to appear, as shown in the following illustration:
[image:]
IronPython Scenario
This walkthrough demonstrates how to access an IronPython library from C#.
To set up an IronPython interop project
1.	Start Visual Studio 2010 and create a new C# console application.
2.	Add references to IronPython.dll, IronPython.Modules.dll, and Microsoft.Scripting.dll (all located in the %PROGRAMFILES%\IronPython 2.0 VS10 CTP folder).
3.	 Copy the Python Lib folder into the bin\Debug folder for your project. (For example, copy the %PROGRAMFILES%\IronPython 2.0 VS10 CTP\Lib folder into the C:\IronPythonProject\bin\Debug folder.)
4.	Add the following using statements to the top of the Program.cs file:
Visual C# code
using IronPython.Hosting;
using Microsoft.Scripting.Hosting;

Visual Basic code (preview)
Imports IronPython.Hosting
Imports Microsoft.Scripting.Hosting
To import an IronPython module in C#
5.	Add code to create a new ScriptRuntime to represent the hosted IronPython environment. This ScriptRuntime can then be used to load Python code, in this case the library module random, which contains the shuffle function.
Add the following code to the Main method:
Visual C# code
Console.WriteLine("Loading random.py...");

ScriptRuntime py = Python.CreateRuntime();
dynamic random = py.UseFile("random.py");

Console.WriteLine("random.py loaded!");

var items = Enumerable.Range(1, 7).ToArray();

Visual Basic code (preview)
Console.WriteLine("Loading random.py...")

Dim py As ScriptRuntime = Python.CreateRuntime()
Dim random As Object = py.UseFile("random.py")

Console.WriteLine("random.py loaded!")

Dim items = Enumerable.Range(1, 7).ToArray()
6.	Add the following code to the end of the Main method, which repeatedly calls the shuffle function to generate random orderings of the items array:
Visual C# code
while (true)
{
 random.shuffle(items);
 foreach (int i in items)
 {
 Console.Write("{0} ", i);
 }
 Console.WriteLine();
}

Visual Basic code (preview)
Do
 random.shuffle(items)
 For Each i In items
 Console.Write("{0} ", i)
 Next
 Console.WriteLine()
Loop
7.	Build and run the application. The Python module random repeatedly shuffles the numbers 1 through 7 in random order. Notice that there is a startup cost when the Python runtime is first initialized, but that each iteration of the loop then executes extremely fast.

[bookmark: _Walkthrough:_TDD_Support][bookmark: _Toc210728671]Walkthrough: TDD Support with the Generate From Usage Feature
This walkthrough demonstrates how to use the new Visual Studio 2010 Generate From Usage feature that supports Test-Driven Development (TDD).
TDD is an approach to software design in which you first write unit tests based on the product specifications, and then write the source code required to make the test succeed. Visual Studio 2010 supports TDD by generating new types and members in your source code when you first reference them in your test cases.
Visual Studio 2010 generates the new types and members with minimal interruption to your workflow. You can create stubs for types, methods, properties, or constructors without leaving your current location in code. When you invoke a dialog box to specify options for type generation, the focus returns immediately to the current open file when the dialog box closes.
In the release version of Visual Studio 2010, the Generate From Usage feature can be used in conjunction with any test framework that integrates with Visual Studio. In this walkthrough, the Microsoft Unit Testing Framework is demonstrated.
To set up a project and test project
1.	In Visual C# or Visual Basic, create a new Windows Class Library project and name it GFUDemo_VB or GFUDemo_CS, depending on which language you have chosen.
2.	In Solution Explorer, right-click the solution icon at the top, point to Add, and then click New Project to open the Add New Project dialog box. In the Project Types pane on the left, click Test.
3.	In the Templates pane on the right, click Test Project and accept the default name of TestProject1. The following illustration shows the dialog box when it is invoked in Visual C#. In Visual Basic, the dialog box looks similar.
[image:]
4.	Click OK to close the Add New Project dialog box.
You are now ready to begin writing tests.
To generate a new class from a unit test
1.	The test project contains a file named UnitTest1. Double-click this file in Solution Explorer to open it in the Code Editor.
Locate the declaration for class UnitTest1 and rename it to AutomobileTest. Locate TestMethod1 and rename it to DefaultAutomobileIsInitializedCorrectly. Inside this method, create a new instance of a class named Automobile. Notice that a wavy underline immediately appears, indicating a compile-time error, along with a smart tag under the type name. Also notice that the exact location of the smart tag varies, depending on whether you are using Visual Basic or C#, as shown in the following illustrations:
C#
[image:]

Visual Basic
[image:]
2.	Rest the mouse pointer over the smart tag to see the error message that indicates that no type named Automobile has been defined yet. Click the smart tag or press CTRL+. (CTRL+period) to invoke the Generate From Usage context menu, as shown in the following illustration:
C#
[image:]
Visual Basic
[image:]
3.	Now you have two choices. You can click Generate Class 'Automobile' to create a new file in your test project and populate it with an empty class named Automobile. This option provides the quickest way to create a new class type in a new file with default access modifiers in the current project. However, you may prefer to place the new file in your source code project, or you may want to place the class in an existing file or specify its access modifiers. In such cases, click Generate other to open the New Type dialog box. The following illustration shows the dialog box as it appears in Visual Basic. The Visual C# version is similar.
[image:]
In the Project location list box, click GFUDemo_VB or GFUDemo_CS to instruct Visual Studio to place the file in the source code project, as opposed to the test project. Note that you can also specify the access of the type, in addition to whether the new type is a class, a struct, or an enumeration, in this dialog box. You can also choose to generate the type in an existing file.
4.	Click OK to close the dialog box and create the new file.
5.	In Solution Explorer, look under the GFUDemo_VB or GFUDemo_CS project node to verify that the new file has been created. Note that, in the Code Editor, the focus is still in AutomobileTest.DefaultAutomobileIsInitializedCorrectly, so you can continue writing your test with a minimum of interruption.
To generate a property stub
Assume that the product specification states that the Automobile class has two public properties named Model and TopSpeed. These properties are required to be initialized with default values of “Not specified” and -1 by the default constructor. This unit test will verify that the default constructor sets the properties to their correct default values.
1.	Add this line of code to DefaultAutomobileIsInitializedCorrectly:
C#
Assert.IsTrue(myAuto.Model == "Not specified" && myAuto.TopSpeed == -1);

Visual Basic
Assert.IsTrue(myAuto.Model = "Not specified" And myAuto.TopSpeed = -1)

2.	Because the line references two undefined properties on Automobile, a smart tag appears. Invoke it and then click Generate property stub for 'TopSpeed’. After this stub is generated, a new smart tag appears under the Model property. Generate a property stub for that property as well. The following illustrations show these smart tags.
C#
[image:]
Visual Basic
[image:]
3.	If you want to, you can navigate to the automobile.cs or automobile.vb source code file to verify that the new properties have been generated.
To generate a stub for a new constructor
1.	In this test method, you will generate a constructor stub that will initialize the Model and TopSpeed properties with values that you specify. In the next step you will add additional code to complete the test. Add the following variables and test method to your AutomobileTest class:
C#
 [TestMethod]
 public void AutomobileWithModelNameCanStart()
 {
 string model = "550 Barchetta";
 int topSpeed = 199;
 Automobile myAuto = new Automobile(model, topSpeed);

 }

Visual Basic
 <TestMethod()> Public Sub AutomobileWithModelNameCanStart()
 Dim model As String = "550 Barchetta"
 Dim topSpeed As Integer = 199
 Dim myAuto As New Automobile(model, topSpeed)
 End Sub
2.	Invoke the smart tag under the new class constructor and then click Generate constructor stub…. In the Automobile class file, note that the new constructor not only has correctly inferred the types of the arguments, but has also examined the names of the local variables that are used in the constructor call, found properties with the same names in the Automobile class, and supplied code in the constructor body to store the argument values in the Model and TopSpeed properties. (Note that in Visual Basic, the_model and _topSpeed fields in the new constructor are the implicitly defined backing fields for the Model and TopSpeed properties.)
3.	After you generate the new constructor, a wavy underline appears under the call to the default constructor in DefaultAutomobileIsInitializedCorrectly. The error message informs you that the Automobile class has no constructor that takes zero arguments. To generate an explicit default constructor with no parameters, invoke the smart tag and click Generate constructor stub….
To generate a stub for a method
1.	Assume that the specification states that a new Automobile can be put into a Running state if its Model and TopSpeed properties are set to something other than the default values. Add the following lines to the method:
C#
myAuto.Start();
Assert.IsTrue(myAuto.IsRunning == true);

Visual Basic
myAuto.Start()
Assert.IsTrue(myAuto.IsRunning = True)

2.	Invoke the smart tag for the myAuto.Start method call and click Generate method stub…. Next, invoke the smart tag for IsRunning and click Generate property stub….
The Automobile class now looks like this:
C#
public class Automobile
 {
 public int TopSpeed { get; set; }

 public string Model { get; set; }

 public void Start()
 {
 throw new NotImplementedException();
 }

 public bool IsRunning { get; set; }

 public Automobile(string model, int topSpeed)
 {
 // TODO: Complete member initialization
 this.Model = model;
 this.TopSpeed = topSpeed;
 }

 public Automobile()
 {
 // TODO: Complete member initialization
 }
 }

Visual Basic
Public Class Automobile
 Sub New(ByVal model As String, ByVal topSpeed As Integer)
 ' TODO: Complete member initialization
 _model = model
 _topSpeed = topSpeed
 End Sub
 Sub New()
 ' TODO: Complete member initialization
 End Sub

 Property TopSpeed As Integer
 Property Model As String
 Property IsRunning As Boolean
 Sub Start()
 Throw New System.NotImplementedException
 End Sub

End Class
To run the tests
1.	From the main menu, click Test, point to Run, and then click All Tests in Solution. This command runs all tests in all test frameworks that have been written for the current solution. In this case, there are two tests, and they both fail, as expected. The Test Results window looks like this:
[image:]
To navigate to the source code
Now that the tests have run and failed, the next step is to navigate to the Automobile class and implement the code that will cause the tests to pass. Quick Search is a new feature in Visual Studio 2010 that enables you to quickly enter a text string, such as a type name or part of a name, and navigate to the desired location by clicking the element in the result list.
1.	Open the Quick Search dialog box by clicking in the Code Editor and pressing CTRL+, (CTRL+comma). In the text box, type Start, as shown in the following illustration:
[image:]
To implement the source code
1.	When the Start method is called, it should set the IsRunning flag to true only if the Model and TopSpeed properties have been set to something other than their default value. Remove the NotImplementedException from the method body and implement the desired behavior in any way that will cause the tests to succeed. Do the same for the default constructor.
2.	Add code to the default constructor so that the Model, TopSpeed and IsRunning properties are all initialized to their correct default values of “Not specified”, -1, and True (true).
To re-run the tests
From the main menu, click Test, point to Run, and then click All Tests in Solution. This time, the tests pass. The Test Results window looks like this:
[image:]

[bookmark: _Walkthrough:_Office_Programmability][bookmark: _Toc210728672]Walkthrough: Office Programmability in C# and Visual Basic
This walkthrough demonstrates several new features in C# and Visual Basic. This walkthrough focuses on how the new features, when used in conjunction, can greatly simplify Office development, although most of these new features are useful in other contexts.
In this walkthrough, you will create a class that represents a bank account. You will then create collections of objects of that class. Next, you will create an Office Excel worksheet, populate it with data from a collection, and embed the worksheet into an Office Word document. Finally, you will modify the build process so that end users can run your program without having the Office primary interop assembly (PIA) installed on their computers.
This walkthrough demonstrates the following new language features:
New features in Visual C#:
· Optional and named parameters
· Optional ref parameter modifier
· Dynamic dispatch on COM calls returning Object
New features in Visual Basic:
· Auto-implemented properties
· Statement lambdas
· Collection initializers
· Implicit line continuation
New feature in both languages:
· No-PIA deployment
Prerequisites: You must have Excel 2007 and Word 2007 installed on your computer to complete this walkthrough.
To create a new console application
1.	On the File menu, point to New and then click Project. In the New Project dialog box, in the Project types pane, expand Visual Basic or Visual C#, and then click Windows. In the upper right-hand corner, make sure that .NET Framework 4.0 is selected. Then click Console Application and click OK.
2.	In Solution Explorer, right-click the project node and then click Add Reference. On the .NET tab, select Microsoft.Office.Interop.Excel, version 12.0. Hold down CTRL and click Microsoft.Office.Interop.Word, version 12.0.
3.	Click OK to close the Add Reference dialog box.
To create the bank account class
In this section, you will create a simple class that represents a bank account.
1.	In Solution Explorer, right-click the project node, point to Add, and then click Class to open the Add New Item dialog box. Name the file Account.vb (for Visual Basic) or Account.cs (for C#) and click Add.
2.	Add the following code to the new class. Note that when you declare a property, it is no longer necessary to also create an explicit backing field because the compiler will add one automatically. This is called an auto-implemented property, and it is new to Visual Basic 10.0:
Visual Basic code
Public Class Account
 Property ID As Integer = -1
 Property Balance As Double
End Class

Visual C# code
Note: Be sure to delete any namespace declarations before pasting in this code. To simplify the rest of the walkthrough, the Account class should be outside of any namespace.
public class Account {
 public int ID { get; set; }
 public double Balance { get; set; }
}

To import the Office namespaces:
There is nothing new in this step. You are just adding Imports statements or using directives so that you do not have to fully qualify the names of the Excel and Word objects each time you reference them.
· At the top of the Module1.vb or Program.cs file, add the following code:
Visual Basic code
Imports Microsoft.Office.Interop

Visual C# code
using Microsoft.Office.Interop;
using Excel = Microsoft.Office.Interop.Excel;
using Word = Microsoft.Office.Interop.Word;

To add data to the account class
This step demonstrates collection initializers, which provide a convenient and expressive way to populate a collection like a list or array with elements when you first create the object. This feature was introduced in C# in Visual Studio 2008 and is introduced in Visual Basic in Visual Studio 2010.
In the Main method of your application, add the following code:
Visual Basic code
Dim checkAccounts As New List(Of Account) From {
 New Account With {
 .ID = 345,
 .Balance = 541.27
 },
 New Account With {
 .ID = 123,
 .Balance = -127.44
 }
 }

Visual C# code
var checkAccounts = new List<Account> {
 new Account {
 ID = 345,
 Balance = 541.27
 },
 new Account {
 ID = 123,
 Balance = -127.44
 }
 };
To display the account data in Excel
This step demonstrates how to create a new Excel workbook and populate it with data from the List<Account> or List (Of Account) that was initialized in the previous step. Action is a delegate type; several Action delegates are defined that have differing numbers of input parameters, but they all return void. In a later step, you will use a statement lambda when calling DisplayInExcel to supply the inline method that matches the Action delegate signature.
1.	Declare the DisplayInExcel method, as shown in the following code:
Visual Basic code
Sub DisplayInExcel(accounts As IEnumerable(Of Account),
 DisplayFunc As Action(Of Account, Excel.Range))

 With New Excel.Application
 .Workbooks.Add()
 .Visible = True
 .Range("A1").Value = "ID"
 .Range("B1").Value = "Balance"
 .Range("A2").Select()

 For Each ac In accounts
 DisplayFunc(ac, .ActiveCell)
 .ActiveCell.Offset(1, 0).Select()
 Next

 .Range("A1:B3").Copy()

 End With
End Sub

Visual C# code
 public static void DisplayInExcel(IEnumerable<Account> accounts,
 Action<Account, Excel.Range> DisplayFunc)
 {
 var xl = new Excel.Application();

 xl.Workbooks.Add();
 xl.Visible = true;
 xl.Cells[1, 1].Value2 = "ID";
 xl.Cells[1, 2].Value2 = " Balance";
 xl.Cells[2, 1].Select();
 foreach (var ac in accounts)
 {
 DisplayFunc(ac, xl.ActiveCell);
 xl.ActiveCell.get_Offset(1, 0).Select();
 }

 xl.get_Range("A1:B3").Copy();
 }

2.	At the bottom of the Main method, call the DisplayInExcel method by using the following code. Note the use of the statement lambda, which colors the Excel cell red if the balance is negative.
Visual Basic code
DisplayInExcel(checkAccounts, Sub(account, cell)
 'This multiline lambda will set
 'custom processing rules.
 cell.Value2 = account.ID
 cell.Offset(0, 1).Value2 = account.Balance

 If account.Balance < 0 Then
 cell.Interior.Color = RGB(255, 0, 0)
 cell.Offset(0, 1).Interior.Color =
 RGB(255, 0, 0)
 End If

 End Sub)

Visual C# code
DisplayInExcel(checkAccounts, (account, cell) =>
 {
 // This multiline lambda will set
 // custom processing rules.
 cell.Value2=account.ID;
 cell.get_Offset(0, 1).Value2 = account.Balance;

 if (account.Balance < 0)
 {
 cell.Interior.Color = 255;
 cell.get_Offset(0, 1).Interior.Color = 255;
 }
 });
3.	To automatically adjust the width of these columns to fit their contents, insert the following code at the end of the DisplayInExcel method:
Visual Basic code
xl.Columns(1).AutoFit
xl.Columns(2).AutoFit

Visual C# code
xl.Columns[1].AutoFit();
xl.Columns[2].AutoFit();

Notice that the AutoFit method is being called on the result of the indexed call to Columns, which has a type of Object. Return values of type Object from COM hosts such as Office are automatically treated as Dynamic in C# 4.0, which allows dynamic dispatch (late binding) and avoids the casts that would be required in C# 3.0:
Visual C# code
// C# 3.0 code. Not necessary in C# 4.0!
((Range)xl.Columns[1]).AutoFit();
((Range)xl.Columns[2]).AutoFit();

To embed the Excel spreadsheet into a Word document
In this step, you will create an instance of Word and paste a link to the Excel worksheet into the document. There is nothing new in the Visual Basic code, because Visual Basic has supported named and optional parameters for a long time. Note, however, that C# 4.0 now supports this feature. The PasteSpecial method actually has seven parameters, but they are all optional, so in C# it is no longer necessary to supply arguments for all parameters.
· Insert the following code at the end of the Main method:
Visual Basic code
 Dim word As New Word.Application
 word.Visible = True
 word.Documents.Add()
 word.Selection.PasteSpecial(Link:=True, DisplayAsIcon:=True)

Visual C# code
 var word = new Word.Application();
 word.Visible = true;
 word.Documents.Add();
 word.Selection.PasteSpecial(Link: true, DisplayAsIcon: true);

Finally, in the definition for PasteSpecial, note that all of its parameters are ByRef (ref in C#). C# 4.0 allows you to make calls to COM components without having to specify ref in front of each parameter. What can now be done in one line of code used to take about 15 (for this particular function) in C# 3.0:
Visual C# code
// C# 3.0 code. Not necessary in C# 4.0!
object iconIndex = System.Reflection.Missing.Value;
object link = true;
object placement = System.Reflection.Missing.Value;
object displayAsIcon = true;
object dataType = System.Reflection.Missing.Value;
object iconFileName = System.Reflection.Missing.Value;
object iconLabel = System.Reflection.Missing.Value;
word.Selection.PasteSpecial(ref iconIndex,
 ref link,
 ref placement,
 ref displayAsIcon,
 ref dataType,
 ref iconFileName,
 ref iconLabel);

To run the application
· Press F5 to run the application. First, Excel will open and display a worksheet. Next, Word will open and display a document that contains an embedded link to the Excel worksheet. It should look something like this:
[image:]
To remove the PIA dependency
1.	Start a Visual Studio command prompt (from the Visual Studio Tools folder on the Start menu). Type ildasm and press ENTER. Open your assembly. (It will be in your project’s bin directory, by default: My Documents\Visual Studio 10\Projects\project name\bin)
2.	Double-click Manifest. You should see the following entry for Excel in the list. (There will also be a similar entry for Word.)
.assembly extern Microsoft.Office.Interop.Excel
{
 .publickeytoken = (71 E9 BC E1 11 E9 42 9C)
 // q.....B.
 .ver 12:0:0:0
}

This is an assembly reference to the Excel primary interop assembly (PIA). Because this assembly is referenced by your application, it needs to exist on the end user's computer.
3.	The No-PIA feature enables you to compile your application in such a way that references to a PIA are no longer required; the compiler will import whatever types you use from the PIA into your own assembly. This results in a much smaller assembly and easier deployment; the PIAs no longer have to be present on the user's computer. Also, this application can now work with multiple versions of Office (because it does not require a specific version of a PIA).
4. 	In Solution Explorer, click the Show All References button. Expand the References folder and select Microsoft.Office.Interop.Excel. Press F4 to display the Properties window.
[image:]
5.	Change the Embed Interop Types property from False to True.
6.	Repeat step 5 for Microsoft.Office.Interop.Word.
7.	Be sure to close Ildasm. Press F5 to rebuild the project. Verify that everything still runs correctly.
8.	Repeat steps 1 and 2. Notice that this time the entries for Excel and Word are gone. You no longer need to distribute these PIA DLLs to the user’s computer.

[bookmark: _Walkthrough:_Quick_Search][bookmark: _Toc210728673]Walkthrough: Quick Search for Files and Symbols
This walkthrough demonstrates the new Quick Search for Files and Symbols feature in Visual Studio 2010. Quick Search is a tool that helps you locate items in your code by using "fuzzy" search capabilities. You can access the Quick Search window from within any code file in a project by pressing CTRL+, (the CTRL key and the comma key). You can type any number of search terms in the Quick Search window and Visual Studio will search your project for symbols, which include file, type, and member names, that match the supplied search terms.
For convenience, this walkthrough uses the PeopleTrax sample that is included with Visual Studio. You can, of course, use the Quick Search feature with any solution or project.
To open the sample solution
1.	Navigate to C:\Program Files\Visual Studio 10.0\Samples\1033\TeamDev Samples.zip.
2.	Extract the files to a folder of your choice, and then navigate to the PeopleTrax folder.
3.	Double-click PeopleTrax/CS/PeopleTrax/PeopleTrax.sln to open the solution in Visual Studio 2010.
The following illustration shows the location of the TeamDev Samples folder.
[image:]
To search for symbols by using the Quick Search window
1.	In Solution Explorer, double-click person.cs in the Person project. From anywhere in the code file, press CTRL+,. The following window appears.
[image:]
2. 	In the text box at the top of the Quick Search window, type get. The Quick Search window displays all symbols that contain the characters "get", as shown in the following illustration. The search is case-insensitive.
[image:]
3.	After "get", type a space and then name. The Quick Search window displays all symbols that contain both "get" and "name", as shown in the following illustration.
[image:]
4.	Press the DOWN ARROW key to select the GetNames entry in the results box. Press ENTER. Visual Studio will navigate to the GetNames method definition in the people.cs file in the People project.
Other navigation features
You can also try these new navigation features for Visual Studio 2010.
· Highlight Reference: Select a symbol to highlight all instances of that symbol. While pressing CTRL+SHIFT, press the UP and DOWN ARROW keys to toggle through the instances of the selected symbol.
· Call Hierarchy: Use the Call Hierarchy window to navigate calls to and from a selected symbol. For more information, see the Call Hierarchy walkthrough. (Call Hierarchy is implemented only for C# at this time. Call Hierarchy will be implemented for Visual Basic in a later beta release of Visual Studio 2010).

[bookmark: _Toc210113828][bookmark: _Toc210728674]Development in C++
This section contains the following walkthroughs.
· What’s New in Visual C++ (CTP)
· Walkthrough: Using MSBuild to Create a Visual C++ Project
· How to: Add a Build Event to an MSBuild Project
· How to: Add a Custom Build Step to an MSBuild Project
· How to: Add Custom Build Tools to an MSBuild Project
· How to: Create a Project-to-Project Reference
· Walkthrough: Adding a Task Dialog to an Application
· How to: Add Support for the Restart Manager
· Walkthrough: Deploying a Visual C++ Application
· How to: Upgrade from Earlier Versions to Visual C++ 10

[bookmark: _What's_New_in_3][bookmark: _Toc210728675]What's New in Visual C++ (CTP)
Introduction
This section lists features and enhancements to Visual C++ 2010 and the Visual Studio IDE.
Improved Project System Support for Visual C++
· MSBuild
· Native Multi-targeting
· Platform Extensibility
Visual Studio User Experience
· Improved Responsiveness and Scale
· Improved Accuracy and Robustness
C++0x Features
· Lambda Expressions
· Rvalue References
· static_assert
· auto Keyword
MFC Improvements
· The CTaskDialog
· The Restart Manager
Deployment
· Deploying Visual C++ Applications
Improved Project System Support for Visual C++
[bookmark: _MSBuild]MSBuild
In Visual Studio 2010 CTP, the Visual C++ Build System is MSBuild-based; VCBuild.exe is replaced by MSBuild.exe. The MSBuild system enables you to combine your existing knowledge of the VCBuild and MSBuild systems to create flexible and customizable Visual C++ projects. You can use MSBuild to build new Visual C++ projects or you can upgrade your existing VCBuild-based projects to MSBuild. Although VCBuild provides many build features, MSBuild provides the following advantages:
· Diagnostics: MSBuild has extensive diagnostic capabilities that help customers debug build issues easily. For example, MSBuild helps you determine why project files build in a particular order because MSBuild understands the dependencies among project files.
· Extensibility: By using MSBuild, customers can build for a custom platform by implementing tasks and targets. Customers could also target a different toolset used during the build process through MSBuild support for C++.
· Integration: You can add your Visual C++ projects to an existing MSBuild environment. For example, you can add a Visual C++ project to an existing MSBuild environment that contains Visual C# or Visual Basic projects that use the .NET Framework.
· Expertise: Microsoft is standardizing on MSBuild. Because MSBuild supports many languages, you only have to learn how to use a single build system.
[bookmark: _Native_Multi-targeting]Native Multi-targeting
With the move to MSBuild, the Visual C++ build system can target both the toolsets available in Visual Studio 2010 CTP and in Visual Studio 2008. This enables you to take advantage of the IDE enhancements in Visual Studio 2010 CTP while you continue to use an older version of the Visual C++ libraries or compiler. When you update to the Visual C++ 2010 libraries and compiler, you are only required to change a single property in your MSBuild project.
[bookmark: _Platform_Extensibility]Platform Extensibility
You can use the new Visual C++ project system to create a custom platform for your application. You can customize the build system by adding new tools, replacing existing tools, providing custom debuggers and deployment tools, and exposing new properties to the user in the Property Pages dialog box for your project.
Visual Studio User Experience
[bookmark: _Improved_Responsiveness_and]Improved Responsiveness and Scale
· Editing header files: Previously, if you edited a header file that was included in several of your source files, Visual Studio prevented you from working while it performed a lengthy, disruptive parse of your whole project. In the new Visual Studio, if you change a header file, you can continue editing while the parse proceeds. In addition, IntelliSense becomes available again after a brief wait.
· Switching configurations: In a manner similar to the problem with editing header files, the previous Visual Studio interrupted your work when you reconfigured your project. That is, if you changed your configuration from Debug to Release, for example, you could not continue to work until Visual Studio finished a lengthy parse of your project. In the new Visual Studio, you can work without interruption when you reconfigure your project.
· Configuring the physical layout of projects: Does your application consist of lots of source files? If so, the previous Visual Studio IDE behaved slowly while it parsed all your files. To lessen this problem, you might have divided your files into several solutions so that Visual Studio could parse fewer files in each solution. In the new Visual Studio, the IDE remains responsive even if you have many source files. That means you can rationally group your files into solutions and projects that meet your goals.
[bookmark: _Improved_Accuracy_and]Improved Accuracy and Robustness
· IntelliSense and Code Comprehension: The previous Visual Studio based its IntelliSense feature on the compiler, which understands complex C++ code. However, IntelliSense could not comprehend some advanced code constructs. In the new Visual Studio, IntelliSense can handle almost anything.
· IntelliSense and Macro Context: Previously, IntelliSense did not consider macro context when it displayed conditionally defined types. The new Visual Studio correctly and appropriately uses macro context information to display information.
· IntelliSense and Macro Comprehension: The new Visual Studio provides more useful information about the body of macros. Essentially, IntelliSense interprets the body of a macro as an expression, and then uses its ability to deal with expressions to provide helpful and timely information.
C++0x Features
The Visual C++ compiler in Visual Studio 2010 CTP introduces four new features to support the C++0x standard: lambda expressions, rvalue references, compile-time assertions, and automatic type deduction.
[bookmark: _Lambda_Expressions]Lambda Expressions
Many programming languages support the concept of an anonymous function. An anonymous function is a function that has a body, but does not have a name. A lambda expression is a programming technique that is related to anonymous functions. A lambda expression implicitly defines a function object class and constructs a function object of that type. You can think of a lambda expression as an anonymous function that maintains state and that can access the variables that are available to the enclosing scope.
Lambda expressions resemble function pointers and function objects, but overcome their disadvantages. A lambda expression has a compact syntax that enables you to write code that is less cumbersome and less prone to errors than function objects. Lambda expressions are useful when you use generic algorithms, such as C++ standard library algorithms, that use function objects to customize their behavior.
[bookmark: _static_assert]static_assert
The static_assert declaration tests a software assertion at compile time. A software assertion specifies a condition that you expect to be true at a particular point in your program. If the condition specified in the static_assert declaration is false, the compiler displays a user-specified message and the compilation fails with an error. Otherwise, the static_assert declaration has no effect.
A static_assert declaration is especially useful for debugging template arguments. This is because you can use a static_assert declaration to test a template argument at compile time, when the template is instantiated. In contrast, the assert (CRT) macro serves a similar purpose but is evaluated at run time and incurs a run time cost in space or time.
[bookmark: _auto_Keyword]auto Keyword
The C++0x standard changes the meaning of the auto keyword. Starting in Visual C++ 2010, the auto keyword directs the compiler to deduce the type of a declared variable from its initializer expression. Use the auto keyword to declare a variable with a lengthy or complicated type, or to declare and initialize a variable to a lambda expression.
To use the auto keyword for type deduction, declare a variable with the auto keyword instead of a type, and specify an initialization expression. In addition, you can modify the auto keyword with specifiers and declarators such as const, volatile, pointer (*), reference (&), and rvalue reference (&&). The compiler evaluates the initialization expression and then uses that information to deduce the type of the variable.
Use the /Zc:auto compiler option to tell the compiler to use the new or original meaning of the auto keyword.
[bookmark: _Rvalue_References]Rvalue References
The C++0x standard introduces a new kind of reference, called an rvalue reference. An rvalue reference declaration distinguishes an lvalue from an rvalue. You declare an rvalue reference by using the && declarator. An ordinary reference that you declare by using the & declarator is now called an lvalue reference. Lvalue references and rvalue references are syntactically and semantically similar, but they follow somewhat different rules. The differences between lvalue references and rvalue references are most noticeable in overloaded functions.
An rvalue reference is useful when you want to create a function that can modify the value of a temporary object or when you want to treat lvalues and rvalues uniformly. Rvalue references support the concepts of move semantics and perfect forwarding.
Move semantics can significantly increase the performance of your applications. Move semantics enable you to write code that transfers resources from one object to another by writing a move constructor or move assignment operator. The need for move semantics occurs when you want to move an object from one memory location to another. For example, when you insert an element into a std::vector object, the std::vector object reallocates memory for the elements and copies the existing elements to the new memory location. Move semantics enable you to move objects without having to perform expensive copy operations.
Perfect forwarding reduces the need for overloaded functions and helps avoid the forwarding problem. The forwarding problem can occur when you write a generic function that takes references as its parameters and it passes (or forwards) these parameters to another function. If the generic function takes a parameter of type const T&, then the called function cannot modify the value of that parameter. If the generic function takes a parameter of type T&, then the function cannot be called with an rvalue (such as a temporary object or integer literal).
Ordinarily, to solve this problem, you must provide overloaded versions of the generic function that take both T& and const T& for each of its parameters. As a result, the number of overloaded functions increases exponentially with the number of parameters. Rvalue references enable you to write one version of a function that accepts arbitrary arguments and forwards them to another function as if the other function had been called directly.
MFC Improvements
[bookmark: _The_CTaskDialog]The CTaskDialog
The task dialog is a new dialog available in Windows Vista that replaces and adds functionality to the windows message box. In addition to displaying a message to the user, the CTaskDialog can display custom buttons, command-line options, and supplementary information. The CTaskDialog contains several ease-of-use functions; the task dialog also has several methods that you can use to gather information from the user based on what they select in the task dialog.
[bookmark: _Restart_Manager_Support]Restart Manager Support
Visual Studio now supports the restart manager in MFC applications. The restart manager is a Windows Vista feature that protects users against accidental data loss by regularly saving the current state of any open documents. If your application terminates unexpectedly, the restart manager restarts your application and gives the user the option of restoring the automatically saved data. You can add this functionality to an existing application by adding just one line of code and recompiling. By using the restart manager, your applications greatly reduce the chances of accidental data loss.
Deployment
[bookmark: _Deploying_Visual_C++]Deploying Visual C++ Applications
Visual Studio 2010 CTP changes the way that you deploy applications that have a dependency on the Visual C++ libraries. Applications that depend on the Visual C++ libraries no longer require a Fusion (WinSxS) manifest. This means that deployment to an application-local folder does not require the satellite manifest. Visual Studio 2010 CTP supports previous deployment mechanisms, such as merge modules (.msm) and VCRedist, which install the Visual C++ libraries to the System32 folder. Windows Update emergency servicing for critical security vulnerabilities will only support centrally-deployed Visual C++ libraries. If your application does not have an emergency servicing channel, you should deploy the Visual C++ libraries to a central location.

[bookmark: _Walkthrough:_Using_MSBuild][bookmark: _Toc210728676]Walkthrough: Using MSBuild to Create a Visual C++ Project
Introduction
This walkthrough demonstrates how to use MSBuild to create and extend a simple Visual C++ project. In this walkthrough you write code to create a simple MSBuild project for a Visual C++ console application that contains precompiled headers. You then extend the MSBuild project to deploy the application to a compressed cabinet (.cab) file.
This walkthrough shows you how to:
· Create the C++ source files for your project.
· Create the MSBuild project file.
· Use MSBuild to build your project.
Note This walkthrough focuses on how to use MSBuild from a command prompt. For more information about how to use MSBuild with a Visual C++ project from the Visual Studio IDE, see Walkthrough: How to Use the C++ MSBuild Project System.
Prerequisites
· Visual Studio 2010 CTP.
· A general understanding of the MSBuild system.
Creating the C++ Source Files
This example project contains the following files:
· main.cpp: The entry point for your console application. The main function prints a message to the console.
· stdafx.cpp: Includes the standard precompiled header file, stdafx.h.
· stdafx.h: The precompiled header file.
· targetver.h: Defines the minimum required platform for your application.
The following steps show how to create the source code files for a Visual C++ console application that contains precompiled headers. You can use the Win32 Console Application Wizard in Visual Studio to create a similar project.
To create the C++ source files for your project
1.	Add the following code to the main application source file, main.cpp:
// main.cpp : Defines the entry point for the console application.

#include "stdafx.h"
int main()
{
 printf_s("Hello from MSBuild!\n");
}
2.	Add the following code to the precompiled source file, stdafx.cpp:
// stdafx.cpp : source file that includes just the standard includes
// stdafx.obj will contain the pre-compiled type information

#include "stdafx.h"

// TODO: reference any additional headers you need in STDAFX.H
// and not in this file
3.	Add the following code to the precompiled header file, stdafx.h:
// stdafx.h : include file for standard system include files,
// or project specific include files that are used frequently, but
// are changed infrequently

#pragma once

#include "targetver.h"

#include <stdio.h>
#include <tchar.h>

// TODO: reference additional headers your program requires here
4.	Add the following code to the minimum platform target file, targetver.h:
// targetver.h
//
#pragma once

// The following macros define the minimum required platform. The minimum required platform
// is the earliest version of Windows, Internet Explorer etc. that has the necessary features to run
// your application. The macros work by enabling all features available on platform versions up to and
// including the version specified.

// Modify the following defines if you have to target a platform prior to the ones specified below.
// Refer to MSDN for the latest info on corresponding values for different platforms.
#ifndef _WIN32_WINNT // Specifies that the minimum required platform is Windows Vista.
#define _WIN32_WINNT 0x0600 // Change this to the appropriate value to target other versions of Windows.
#endif

Next, you create a simple MSBuild project file for your application.
Creating the MSBuild Project File
The topic How To: Write a Simple MSBuild Project explains how to create a simple MSBuild project that contains a single Visual C# source file. The following procedure is an overview that shows you how to create a similar project file for your Visual C++ console application.
To create a MSBuild Project File
1.	Create the project file (explained in the next procedure).
2.	Add the Project element.

The Project element is the root element of the MSBuild project file. Every MSBuild project starts with the <Project> tag and ends with the </Project> tag.
4.	Import default Visual C++ project settings.

The Import element declares that the contents of another project file should be inserted at the current location. For example, the Microsoft.Cpp.default.settings file specifies many default settings for a Visual C++ project, such as the Platform property.
6.	Specify the project build output.

A property group enables you to set specific properties for your project. For example, to specify that the build output is an application (.exe), specify Application as the value of the ConfigurationType property. You use the PropertyGroup element to specify an item group.
7.	Specify use of precompiled headers.

An item definition group enables you to apply a value to all items in a project. For example, you can use an item definition group to specify the default warning level. In this project, you use an item definition group to specify that each input file uses a precompiled header. You use the ItemDefinitionGroup element to specify an item group.
8.	Import additional Visual C++ project settings.

After you specify project settings such as the build output, you import additional Visual C++ project settings. For example, you import the Microsoft.Cpp.settings file after you set the build output. Because you set the ConfigurationType property to Application, the Microsoft.Cpp.settings file imports additional settings from Microsoft.Cpp.Application.settings.
9.	Specify which source files to build.

An item group enables you to specify the inputs for the build process. You use an item group to specify the source (.cpp) files that belong to your project. You do not specify header (.h) files in an item group because the source files include them. You can also specify additional properties about each build input. For example, you specify that the input source file stdafx.cpp creates a precompiled header (.pch) file. You use the ItemGroup element to specify an item group.
10.	Import the default set of targets that MSBuild will run.
11.	Create a custom MSBuild target that creates a compressed cabinet (.cab) file that contains the target executable file.

An MSBuild target contains a set of tasks for MSBuild to execute sequentially. CPPClean, ClCompile, and Link are all examples of MSBuild targets. You use an Import element to import the default tasks that MSBuild executes. You then use the Target element to create a custom target, which is named Deploy, that runs after the Link target. The Deploy target runs the makecab utility to create a compressed cabinet (.cab) file that contains the target executable file.
The previous procedure is an overview of the process. The following procedure provides the detail of how to create a MSBuild project file.
To create a simple Visual C++ project file
1.	Use a text editor to create the MSBuild project file simple.vcxproj.
2.	Add the Project root element to the project file:
<Project DefaultTargets="Build" ToolsVersion="4.0"
 xmlns="http://schemas.microsoft.com/developer/msbuild/2003">

</Project>
3.	Add an Import element as a child of the Project element to import default Visual C++ project settings:
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.default.settings" />

4.	Add a PropertyGroup element to specify that the project build output is an application:
<PropertyGroup>
 <ConfigurationType>Application</ConfigurationType>
</PropertyGroup>
5.	Add an ItemDefinitionGroup element to specify that each input file uses a precompiled header:
<ItemDefinitionGroup>
 <ClCompile>
 <PrecompiledHeader>Use</PrecompiledHeader>
 </ClCompile>
</ItemDefinitionGroup>
6.	Add an Import element to import additional Visual C++ project settings:
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.settings" />
7.	Add an ItemGroup element to specify which source files to build:
<ItemGroup>
 <ClCompile Include="main.cpp"/>
 <ClCompile Include="stdafx.cpp">
 <PrecompiledHeader>Create</PrecompiledHeader>
 </ClCompile>
</ItemGroup>
8.	Add an Import element to import the default set of targets that MSBuild will run:
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.targets" />
9.	Add a Target element to create a custom MSBuild target that creates a (.cab) file:
<Target Name="Deploy">
 <Message Text='Creating CAB package...' />
 <Exec Command='makecab.exe "$(TargetFileName)" "$(TargetName).cab"'
 WorkingDirectory='$(OutDir)'/>
</Target>
10.	Add a PropertyGroup element to insert the Deploy target after the Link target:
<PropertyGroup>
 <AfterBuildLinkTargets>
 $(AfterBuildLinkTargets);
 Deploy;
 </AfterBuildLinkTargets>
</PropertyGroup>

Many MSBuild elements support the optional Condition attribute. The Condition attribute specifies that MSBuild applies the element block only when the specified condition is met. For example, you can rewrite the ItemDefintionGroup element (from step 5 in the previous procedure) so that the input files use a precompiled header only when the Configuration property is set to Debug and the Platform property is set to Win32:

<ItemDefinitionGroup Condition="'$(Configuration)|$(Platform)' == 'Debug|Win32'">
 <ClCompile>
 <PrecompiledHeader>Use</PrecompiledHeader>
 </ClCompile>
</ItemDefinitionGroup>

The following example shows the complete listing for your MSBuild project:
<Project DefaultTargets="Build" ToolsVersion="4.0"
 xmlns="http://schemas.microsoft.com/developer/msbuild/2003">

 <Import Project="$(VCTargetsPath)\Microsoft.Cpp.default.settings" />

 <PropertyGroup>
 <ConfigurationType>Application</ConfigurationType>
 </PropertyGroup>

 <ItemDefinitionGroup>
 <ClCompile>
 <PrecompiledHeader>Use</PrecompiledHeader>
 </ClCompile>
 </ItemDefinitionGroup>

 <Import Project="$(VCTargetsPath)\Microsoft.Cpp.settings" />

 <ItemGroup>
 <ClCompile Include="main.cpp"/>
 <ClCompile Include="stdafx.cpp">
 <PrecompiledHeader>Create</PrecompiledHeader>
 </ClCompile>
 </ItemGroup>

 <Import Project="$(VCTargetsPath)\Microsoft.Cpp.targets" />

 <Target Name="Deploy">
 <Message Text='Creating CAB package...' />
 <Exec Command='makecab.exe "$(TargetFileName)" "$(TargetName).cab"'
 WorkingDirectory='$(OutDir)'/>
 </Target>

 <PropertyGroup>
 <AfterBuildLinkTargets>
 $(AfterBuildLinkTargets);
 Deploy;
 </AfterBuildLinkTargets>
 </PropertyGroup>

</Project>

Next, you use MSBuild to build and deploy your Visual C++ application.
Using MSBuild to Build Your Project
Use the following MSBuild command to build the project:
MSBuild.exe simple.vcxproj
This command produces the intermediate and object files that the compiler generates, the executable file simple.exe, and the cabinet archive file simple.cab.
You can use additional command-line arguments to customize the behavior of MSBuild. The following example uses the /p (property) option to set the Configuration and Platform properties and the /t (target) option to run the Rebuild target:
MSBuild.exe simple.vcxproj /p:Configuration=Release /p:Platform=x64 /t:Rebuild
The default value of the Configuration and Platform properties is Debug and Win32, respectively. The default target is Build.
Next Steps
MSBuild provides many ways to extend a simple Visual C++ project. The following sections show you how to:
· Use MSBuild to clean your project.
· Use MSBuild to build for multiple platforms.
· Use MSBuild to make incremental changes to your project.
· Use previous toolset versions in MSBuild.
Using MSBuild to Clean Your Project
Use the following MSBuild command to clean your project:
MSBuild.exe simple.vcxproj /t:Clean
This command uses the /t (target) option to run the Clean target. The Clean target deletes the files that are created by MSBuild. For the simple Visual C++ project, the Clean target deletes all intermediate and object files and the files simple.exe and simple.cab.
Using MSBuild to Build for Multiple Platforms
MSBuild supports options for targeting a specific build configuration and target platform. The following MSBuild command uses the /p (property) option to set the Configuration and Platform properties to Debug and Win32, respectively:
MSBuild.exe simple.vcxproj /p:Configuration=Debug /p:Platform=Win32
The following MSBuild command targets the Release configuration for the x64 platform:
MSBuild.exe simple.vcxproj /p:Configuration=Release /p:Platform=x64
You can also use MSBuild to target a custom platform. The following MSBuild command targets the Release configuration for a custom platform that is named MyPlatform:
MSBuild.exe simple.vcxproj /p:Configuration=Release /p:Platform=MyPlatform
The following example shows a series of PropertyGroup elements that define custom behavior. Each PropertyGroup element uses the Condition attribute to define custom properties for a specific build configuration and target platform.
<Project DefaultTargets="Build">
 <PropertyGroup Condition=" '$(Configuration)|$(Platform)' == 'Debug|Win32' ">
 <!-- TODO: Set custom properties here. -->
 </PropertyGroup>
 <PropertyGroup Condition=" '$(Configuration)|$(Platform)' == 'Release|x64' ">
 <!-- TODO: Set custom properties here. -->
 </PropertyGroup>
 <PropertyGroup Condition=" '$(Configuration)|$(Platform)' == 'Release|MyPlatform' ">
 <!-- TODO: Set custom properties here. -->
 </PropertyGroup>
</Project>
Using MSBuild to Perform an Incremental Build
MSBuild builds an input file only when the file or one of its dependencies changes. To make an incremental change to your project, modify one of the input files and run MSBuild. The following example modifies the main.cpp file in the simple Visual C++ project to print the message in upper-case:
// main.cpp : Defines the entry point for the console application.
//

#include "stdafx.h"
int main()
{
 printf_s("HELLO FROM MSBUILD!\n"); // change the message to upper-case
}

Use the following MSBuild command to build the project:
MSBuild.exe simple.vcxproj
MSBuild compiles the modified input file main.cpp but skips the unmodified input files, such as stdafx.cpp. The following shows part of the output that MSBuild produces:
ClCompile:
 ***** ClCompile (win32)
 Skipping task because its outputs are up-to-date.
 Main.cpp
Using a Different Toolset with MSBuild
MSBuild in Visual Studio 2010 CTP supports the use of previous toolset versions. For example, you can configure your MSBuild project to use the Visual C++ 9.0 toolset. To specify Visual C++ 9.0 as the platform toolset, add the following PropertyGroup element to the simple.vcxproj project file after you import the file Microsoft.Cpp.settings:
<PropertyGroup>
 <PlatformToolset>v90</PlatformToolset>
</PropertyGroup>

Next, use the following MSBuild command to rebuild the project by using the Visual C++ 9.0 toolset:
MSBuild.exe simple.vcxproj /t:Rebuild
Adding VCBuild Customizations
You can use options that are available to VCBuild in your MSBuild project.
[bookmark: _How_to:_Add][bookmark: _Toc210728677]How to: Add a Build Event to an MSBuild Project
Introduction
You can define commands to execute at any of three events during the build: the pre-build event, the pre-link event, and the post-build event.
You specify the command line to execute and the event. You can optionally specify a message to display when your command executes. You can also add options to exclude your build event from the build.
The pre-build event occurs before the project is built. The pre-link event occurs just before the link step. The post-build event occurs after the project has been built successfully.
Note that a build event is triggered only if the event actually occurs. For example, if no link step is necessary during a build, the pre-link event will not occur and any command associated with it will not execute. Similarly, if a project is up to date, no pre-build or post-build event will occur.
Procedures
To add a pre-build event
1.	Add a PreBuildEventCommand property to the project file as follows:
<PropertyGroup>
 <PreBuildEventCommand>copy a.cpp a2.cpp</PreBuildEventCommand>
</PropertyGroup>
To add a pre-link event
1.	Add a PreLinkEventCommand property to the project file as follows:
<PropertyGroup>
 <PreLinkEventCommand>copy a2.obj a.obj</PreLinkEventCommand>
</PropertyGroup>

To add a post-build event
1.	Add a PostBuildEventCommand property to the project file as follows:
<PropertyGroup>
 <PostBuildEventCommand>copy a.exe a2.exe</PostBuildEventCommand>
</PropertyGroup>

Note You can combine multiple events into a single PropertyGroup as follows.
<PropertyGroup>
 <PreBuildEventCommand>copy a.cpp a2.cpp</PreBuildEventCommand>
 <PreLinkEventCommand>copy a2.obj a.obj</PreLinkEventCommand>
 <PostBuildEventCommand>copy a.exe a2.exe</PostBuildEventCommand>
</PropertyGroup>

To define a message to appear when the build event command executes
1.	Add a message (this step is optional):
<PropertyGroup>
 <PreBuildEventMessage>Copying cpp...</PreBuildEventMessage>
 <PreLinkEventMessage>Copying obj...</PreLinkEventMessage>
 <PostBuildEventMessage>Copying exe...</PostBuildEventMessage>
</PropertyGroup>

To exclude a build event from a configuration
1.	Add a PreBuildEventUseInBuild property. For example, to prevent execution of the pre-build event command in the "Debug|Win32" configuration, add the following:
<PropertyGroup>
 <PreBuildEventUseInBuild
 Condition="'$(Configuration)|$(Platform)' == 'Debug|Win32'">
 false
 </PreBuildEventUseInBuild>
</PropertyGroup>

[bookmark: _How_to:_Add_1][bookmark: _Toc210728678]How to: Add a Custom Build Step to an MSBuild Project
Introduction
A custom build step is a user-defined command that executes between two user-specified points in the build.
You specify the command line to execute, the input and output files for that command, and a message to display when the command executes.
Use the CustomBuildBeforeTargets and CustomBuildAfterTargets properties to specify two targets between which you want your command to execute. For example, you can specify that your command should execute after MIDL generation but before compilation. The precise point of execution will depend on the build system.
When MSBuild is about to execute your custom build step, it checks the input and output files you specified to decide whether to execute. If the output files are out of date compared to the inputs, MSBuild displays the message and executes the command.
If no ordering information is specified, the custom build step will execute at its default location in the build: between the Link target and the BscMake target.
A custom build step is closely related to custom build tools. The main difference is that there is one custom build step per project, although there can be multiple custom build tools, one per file. Custom build steps and custom build tools share CustomBuildBeforeTargets and CustomBuildAfterTargets information. Specify those targets one time in your project file.
The following procedures create a custom build step that is equivalent to the Deploy example in Walkthrough: Using MSBuild to Create a Visual C++ Project.
Procedures
To define what is executed for the custom build step
1.	Add a property group to the project file. In this property group, specify the command, its inputs and outputs, and a message as follows. In this example, the custom build command actually consists of three commands separated by XML-escaped CRLF.

<PropertyGroup>
 <CustomBuildMessage>Creating CAB package...</CustomBuildMessage>
 <CustomBuildCommand>pushd $(OutDir)

 makecab.exe $(TargetFileName) $(TargetName).cab

 popd
 </CustomBuildCommand>
 <CustomBuildInputs>$(TargetFileName)</CustomBuildInputs>
 <CustomBuildOutputs>$(TargetName).cab</CustomBuildOutputs>
</PropertyGroup>

To define where in the build the custom build step will execute
1.	Add the following property group to the project file. You have to specify at least one of the targets, but you can omit the other if you are only interested in having your build step execute before (or after) a particular target.
<PropertyGroup>
 <CustomBuildBeforeTargets>ClCompile</CustomBuildBeforeTargets>
 <CustomBuildAfterTargets>Link</CustomBuildAfterTargets>
</PropertyGroup>
[bookmark: _How_to:_Add_2][bookmark: _Toc210728679]How to: Add Custom Build Tools to an MSBuild Project
Introduction
Custom build tools are user-defined commands that execute between two user-specified points in the build.
Unlike a custom build step, which is a single command that uses a single set of input files, custom build tools operate on multiple input files and can specify a different command for each file.
For each input file, you specify the command line to execute, additional input files, output files, and a message to display when the command executes.
Use the CustomBuildBeforeTargets and CustomBuildAfterTargets properties to specify two targets between which you want your custom build tools to execute. For example, you can specify that your tools should execute after MIDL generation but before compilation. The precise point of execution will depend on the build system.
When MSBuild is about to execute your custom build tools, it checks the input and output files that you specified to decide whether to execute. If the output files are out of date compared to the inputs, MSBuild displays the message and executes the command.
If no ordering information is specified, the custom build tools will execute at their default location in the build: between the pre-build event target and the MIDL target.
Custom build steps and custom build tools share CustomBuildBeforeTargets and CustomBuildAfterTargets information. Specify those targets one time in your project file.
Procedures
To add a custom build tool
1.	Add an item group to the project file and add an item for each input file. Specify the command, additional inputs, outputs, and a message as item metadata, as shown here:
 <ItemGroup>
 <CustomBuild Include="faq.txt">
 <Message>Copying readme...</Message>
 <Command>copy %(Identity) $(OutDir)\%(Identity)</Command>
 <Outputs>$(OutDir)\%(Identity)</Outputs>
 </CustomBuild>
 </ItemGroup>

To define where in the build the custom build tools will execute
1.	Add the following property group to the project file. You have to specify at least one of the targets, but you can omit the other if you are only interested in having your build step execute before (or after) a particular target.
<PropertyGroup>
 <CustomBuildBeforeTargets>ClCompile</CustomBuildBeforeTargets>
 <CustomBuildAfterTargets>Midl</CustomBuildAfterTargets>
</PropertyGroup>

[bookmark: _How_to:_Create][bookmark: _Toc210728680]How to: Create a Project-to-Project Reference
Introduction
This how-to topic demonstrates how to create a project-to-project reference in a Visual C++ project that uses the MSBuild build system. A project-to-project reference defines dependencies among Visual C++ projects, which is useful when you have a project whose inputs are dependent on the outputs of another.
This topic shows a simple C++ console application (.exe) that depends on the functionality of a C++ static library (.lib). This topic builds upon the sample project that is shown in the topic Walkthrough: Using MSBuild to Create a Visual C++ Project.
Procedures
To create a project-to-project reference
1.	Create an MSBuild-based Visual C++ project for your static library (for an example, see Walkthrough: Using MSBuild to Create a Visual C++ Project).
2.	Create an MSBuild-based Visual C++ project for your console application.
3.	Perform the following steps to add a reference to the static library project:
a.	Append an ItemGroup element to the project.
b.	Add a ProjectReference element as a child element of the ItemGroup element. Set the Include attribute to the path of the dependent project.
c.	Add any optional child elements in the ProjectReference element, such as the Name element.
Example
The following examples show the source code files for a C++ static library and a C++ console application. The file Library.h defines the LibraryObject class, which is shared between both projects. Library.cpp contains the implementation for the LibraryObject class. ConsoleApp.cpp defines the main function for the console application. The console application uses the LibraryObject class, which is defined in the static library project.
// Library.h
#pragma once

class LibraryObject
{
public:
 LibraryObject();
 ~LibraryObject();

 char const *GetMessage() const;

private:
 char const *_message;
};

// Library.cpp
#include "Library.h"

LibraryObject::LibraryObject() :
 _message("Hello from StaticLibrary!")
{
}

LibraryObject::~LibraryObject()
{
}

char const *LibraryObject::GetMessage() const
{
 return _message;
}

// ConsoleApp.cpp
#include <stdio.h>
#include "Library.h"

int main()
{
 LibraryObject *obj = new LibraryObject();

 char const *message = obj->GetMessage();

 printf_s("%s\n", message);

 delete obj;
}
Comments
The following example shows a simple MSBuild project for the static library:
<Project DefaultTargets="Build" ToolsVersion="4.0"
 xmlns="http://schemas.microsoft.com/developer/msbuild/2003">

 <Import Project="$(VCTargetsPath)\Microsoft.Cpp.default.settings" />

 <PropertyGroup>
 <ConfigurationType>StaticLibrary</ConfigurationType>
 </PropertyGroup>

 <Import Project="$(VCTargetsPath)\Microsoft.Cpp.settings" />

 <ItemGroup>
 <ClCompile Include="Library.cpp"/>
 </ItemGroup>

 <Import Project="$(VCTargetsPath)\Microsoft.Cpp.targets" />
</Project>

Save this example to a file that is named StaticLibrary.vcxproj. The next example creates a reference to this project file.
The following example shows a simple MSBuild project for the console application. The ItemGroup element at the bottom of the project contains a ProjectReference element that refers to the dependent static library project.
<Project DefaultTargets="Build" ToolsVersion="4.0"
 xmlns="http://schemas.microsoft.com/developer/msbuild/2003">

 <Import Project="$(VCTargetsPath)\Microsoft.Cpp.default.settings" />

 <PropertyGroup>
 <ConfigurationType>Application</ConfigurationType>
 </PropertyGroup>

 <Import Project="$(VCTargetsPath)\Microsoft.Cpp.settings" />

 <ItemGroup>
 <ClCompile Include="ConsoleApp.cpp"/>
 </ItemGroup>

 <Import Project="$(VCTargetsPath)\Microsoft.Cpp.targets" />

 <ItemGroup>
 <ProjectReference Include="StaticLibrary.vcxproj">
 <Name>Static Library</Name>
 </ProjectReference>
 </ItemGroup>
</Project>

Save this example to a file that is named ConsoleApp.vcxproj.
Compiling the Code
Use the following MSBuild command to build the projects:
MSBuild.exe ConsoleApp.vcxproj
This command builds the static library project before the console application because the console application depends on the static library. MSBuild produces the executable file ConsoleApp.exe, which uses the functionality of the static library.
[bookmark: _Walkthrough:_Adding_a][bookmark: _Toc210728681]Walkthrough: Adding a Task Dialog to an Application
Introduction
This walkthrough introduces the CTaskDialog and shows you how to add one to your application.
The CTaskDialog is a task dialog box that replaces the Windows message box in Windows Vista. The CTaskDialog improves the original message box and adds functionality. The Windows message box is still supported in Visual Studio.
Note Versions of Windows earlier than Windows Vista do not support the CTaskDialog. You must program an alternative dialog box option if you want to show a message to a user who runs your application on an earlier version of Windows. You can use the static method CTaskDialog::IsSupported to determine at run time whether a user's computer can display a CTaskDialog. In addition, the CTaskDialog is only available when your application is built with the Unicode library.
The CTaskDialog supports several optional elements to gather and display information. For example, a CTaskDialog can display command links, customized buttons, customized icons, and a footer. The CTaskDialog also has several methods that enable you to query the state of the task dialog box to determine what optional elements the user selected.
Prerequisites
You need the following components to complete this walkthrough:
· Visual Studio 2010 CTP
· Windows Vista
Replacing a Windows Message Box with a CTaskDialog
The following procedure demonstrates the most basic use of the CTaskDialog, which is to replace the Windows message box. This example also changes the icon associated with the task dialog box. Changing the icon makes the CTaskDialog appear identical to the Windows message box.
To Replace a Windows Message Box with a CTaskDialog
1.	Create a new MFC Application project with the default settings. Call it MyProject.
2.	Use the Solution Explorer to open the file MyProject.cpp.
3.	Add #include "afxtaskdialog.h" after the list of includes.
4.	Find the method CMyProjectApp::InitInstance. Insert the following lines of code before the return TRUE; statement. This code creates the strings that we use in either the Windows message box or in the CTaskDialog.
CString message("My message to the user");
CString dialogTitle("My Task Dialog title");
CString emptyString;
5.	Add the following code after the code from step 4. This code guarantees that the user's computer supports the CTaskDialog. If the dialog is not supported, the application displays a Windows message box instead.
if (CTaskDialog::IsSupported())
{

}
else
{
 AfxMessageBox(message);
}
6.	Insert the following code between the brackets after the if statement from step 5. This code creates the CTaskDialog.
CTaskDialog taskDialog(message, emptyString, dialogTitle, TDCBF_OK_BUTTON);
7.	On the next line, add the following code. This code sets the warning icon.
taskDialog.SetMainIcon(TD_WARNING_ICON);
8.	On the next line, add the following code. This code displays the task dialog box.
taskDialog.DoModal();

You can omit step 7 if you do not want the CTaskDialog to display the same icon as the Windows message box. If you omit that step, the CTaskDialog has no icon when the application displays it.
Compile and run the application. The application displays the task dialog box after it starts.
Adding Functionality to the CTaskDialog
The following procedure shows you how to add functionality to the CTaskDialog that you created in the previous procedure. The example code shows you how to execute specific instructions based on the user's selections.
To Add Functionality to the CTaskDialog
1.	Navigate to the Resource View. If you cannot see the Resource View, you can open it from the View menu.
2.	Expand the Resource View until you can select the String Table folder. Expand it and double-click the String Table entry.
3.	Scroll to the bottom of the string table and add a new entry. Change the ID to TEMP_LINE1. Set the caption to Command Line 1.
4.	Add another new entry. Change the ID to TEMP_LINE2. Set the caption to Command Line 2.
5.	Navigate back to MyProject.cpp.
6.	After CString emptyString;, add the following code:
CString expandedLabel("Hide extra information");
CString collapsedLabel("Show extra information");
CString expansionInfo("This is the additional information to the user,\nextended over two lines.");
7.	Find the taskDialog.DoModal() statement and replace that statement with the following code. This code updates the task dialog box and adds new controls:
taskDialog.SetMainInstruction(L"Warning");
taskDialog.SetCommonButtons(TDCBF_YES_BUTTON | TDCBF_NO_BUTTON | TDCBF_CANCEL_BUTTON);
taskDialog.LoadCommandControls(TEMP_LINE1, TEMP_LINE2);
taskDialog.SetExpansionArea(expansionInfo, collapsedLabel, expandedLabel);
taskDialog.SetFooterText(L"This is the a small footnote to the user");
taskDialog.SetVerificationCheckboxText(L"Remember your selection");
8.	Add the following line of code that displays the task dialog box to the user and retrieves the user's selection:
INT_PTR result = taskDialog.DoModal();
9.	Insert the following code after the call to taskDialog.DoModal(). This section of code processes the user's input:
if (taskDialog.GetVerificationCheckboxState())
{
 // PROCESS IF the user selects the verification checkbox
}

switch (result)
{
 case TEMP_LINE1:
 // PROCESS IF the first command line
 break;
 case TEMP_LINE2:
 // PROCESS IF the second command line
 break;
 case IDYES:
 // PROCESS IF the user clicks yes
 break;
 case IDNO:
 // PROCESS IF the user clicks no
 break;
 case IDCANCEL:
 // PROCESS IF the user clicks cancel
 break;
 default:
 // This case should not be hit because closing the dialog box results in IDCANCEL
 break;
}

In the code in step 9, replace the comments that start with PROCESS IF with the code that you want to execute under the specified conditions.
Compile and run the application. The application displays the task dialog box that uses the new controls and additional information.
Displaying a CTaskDialog Without Creating a CTaskDialog Object
The following procedure shows you how to display a CTaskDialog without first creating a CTaskDialog object. This example continues the previous procedures.
To Display a CTaskDialog Without Creating a CTaskDialog Object
1.	Open the MyProject.cpp file if it is not already open.
2.	Navigate to the closing bracket for the if (CTaskDialog::IsSupported()) statement.
3.	Insert the following code immediately before the closing bracket of the if statement (before the else block):
HRESULT result2 = CTaskDialog::ShowDialog(L"My error message", L"Error", L"New Title", TEMP_LINE1, TEMP_LINE2);

Compile and run the application. The application displays two task dialog boxes. The first dialog box is from the To Add Functionality to the CTaskDialog procedure; the second dialog box is from the last procedure.
These examples do not demonstrate all the available options for a CTaskDialog, but should help you get started. Refer to the header file for more customization options.
[bookmark: _How_to:_Add_3][bookmark: _Toc210728682]How to: Add Support for the Restart Manager
Introduction
The restart manager is a feature added to Visual Studio for Windows Vista. The restart manager adds support to your application if it unexpectedly closes or restarts. The behavior of the restart manager depends on the type of your application. If your application is a document editor, the restart manager enables your application to automatically save the state and content of any open documents and restarts your application after an unexpected closure. If your application is not a document editor, the restart manager will restart the application, but it cannot save the state of the application by default.
After restart, the application displays a task dialog box if the application is Unicode. If it is an ANSI application, the application displays a Windows Message box. At this point, the user chooses whether to restore the automatically saved documents. If the user does not restore the automatically saved documents, the restart manager discards the temporary files.
Note You can override the default behavior of the restart manager for saving data and restarting the application.
By default, MFC applications created by using the project wizard in Visual Studio support the restart manager when the applications are run on a computer that has Windows Vista. If you do not want your application to support the restart manager, you can disable the restart manager in the new project wizard.
Procedures
To Add Support For the Restart Manager to an Existing Application
1.	Open an existing MFC application in Visual Studio.
2.	Open the source file for your main application. By default this is the .cpp file that has the same name as your application. For example, the main application source file for MyProject is MyProject.cpp.
3.	Find the constructor for your main application. For example, if your project is MyProject, the constructor is CMyProjectApp::CMyProjectApp().
4.	Add the following line of code to your constructor.
m_dwRestartManagerSupportFlags = AFX_RESTART_MANAGER_SUPPORT_ALL_ASPECTS;
5.	Compile and run your application.
[bookmark: _Walkthrough:_Deploying_a][bookmark: _Toc210728683]Walkthrough: Deploying a Visual C++ Application
Introduction
In this walkthrough, you will learn about the various ways to deploy a Visual C++ application that you build with Visual Studio 2010 CTP. This walkthrough illustrates the following tasks:
· Deploying an application by using a setup project.
· Deploying an application to an application-local folder.
· Deploying an application by using the Visual C++ Redistributable Package.
Prerequisites
You need the following components to complete this walkthrough:
· Visual Studio 2010 CTP
· An additional computer that does not have the Visual C++ libraries.
Procedures
To deploy an application by using a setup project
1.	Use the MFC Application Wizard to create a new Visual Studio solution. To find the wizard, from the New Project dialog box, expand the Visual C++ node, select MFC, select MFC Application, enter a name for the project, and then click OK.
2.	Change the active solution configuration to Release. From the Build menu, select Configuration Manger. From the Configuration Manager dialog box, select Release from the Active solution configuration drop-down box.
3.	Press F7 to build the application. Or, on the Build menu, click Build Solution.
4.	Use the Setup Project template to add a new setup project that is called Setup1 to the solution. To find the template, from the New Project dialog box expand the Other Project Types node, select Setup and Deployment, select Setup Project, and then click OK.
5.	Add the output of the MFC application project to the setup project. To do so, right-click on Setup1 in Solution Explorer, point to Add, and then click Project Output.
6.	In the Add Project Output Group dialog box, select Primary Output.
7.	Select Release Win32 from the Configuration drop-down box, and then click OK.
8.	Expand the Setup1 node in Solution Explorer and right-click on the Detected Dependencies node. Then click Refresh Dependencies.

Visual Studio adds the dependent merge module (.msm) files for the Visual C++ libraries to the setup project.
9.	Build the setup project to create the installer files (Setup1.msi and setup.exe). To do so, right-click the setup project node in Solution Explorer and select Build.

Visual Studio creates the installer files in the Release folder of your setup project.
10.	Run the installer on a second computer that does not have the Visual C++ libraries.
a.	Copy Setup1.msi and setup.exe to the second computer.
b.	Run setup.exe on the second computer. Follow the steps that are provided by the setup wizard to complete the installation.
To deploy an application to an application-local folder
1.	Create and build a new MFC application by following steps 1 through 3 of the previous procedure.
2.	Copy the MFC and C Run-Time Libraries (CRT) library files, mfc100u.dll and msvcr100.dll, to the Release folder of your MFC project. These library files are located in the Microsoft Visual Studio 10.0\VC\redist\x86 folder under your Program Files folder.
3.	Run the application on a second computer that does not have the Visual C++ libraries.
4.	Copy the contents of the Release folder to the second computer.
5.	Run the MFC application on the second computer.
6.	The application runs successfully because the Visual C++ libraries are available in the application-local folder.
To deploy an application by using the Visual C++ Redistributable Package
1.	Create and build a new MFC application by following steps 1 through 3 of the first procedure in this walkthrough.
2.	Add the following commands to a file that is named setup.bat. You need to change MyMFCApplication to the name of the project that you used in step 1.
@echo off
vcredist_x86.exe
mkdir "C:\Program Files\MyMFCApplication"
copy MyMFCApplication.exe "C:\Program Files\MyMFCApplication
3.	Perform the following steps to create a self-extracting setup file:
a.	Run iexpress.exe from a command window or the Run window.
b.	Select Create new Self Extraction Directive file and click Next.
c.	Select Extract files and run an installation command and click Next.
d.	Enter the name of your MFC application into the text box and click Next.
e.	On the Confirmation prompt page, select No Prompt and click Next.
f.	On the License agreement page, select Do not display a license and click Next.
g.	On the Packaged files page, add the following files and then click Next:
· Your MFC application (.exe).
· vcredist_x86.exe. You can find this file in the \Microsoft SDKs\Windows\v7.0A\Bootstrapper\Packages\vcredist_x86 folder under your Program Files folder.
· The setup.bat file that you created in step 2.
h.	On the Install Program to Launch page, enter the following in the Install Program text box and click Next:

cmd.exe /c "setup.bat"
i.	On the Show window page, select Default and click Next.
j.	On the Finished message page, select No message and click Next.
k.	On the Package Name and Options page, enter a name for your self-extracting setup file, select the Store files using Long File Name inside Package option, and click Next. The file name must end in Setup.exe (for example, MyMFCApplicationSetup.exe).
l.	On the Configure restart page, select No restart and click Next.
m.	On the Save Self Extraction Directive page, select, Save Self Extraction Directive (SED) file and click Next.
n.	On the Create package page, click Next.
4.	Run the self-extracting setup file on a second computer that does not have the Visual C++ libraries.
a.	Copy the self-extracting setup file that you created in step 3 to the second computer.
b.	Run the self-extracting setup file on the second computer. Follow the steps that are provided by the setup wizard to complete the installation.
5.	Run the MFC application. The self-extracting setup file installs the MFC application that is in the folder that you specified in step 2.
The application runs successfully because the Visual C++ Redistributable Package installer is included in the self-extracting setup file.

[bookmark: _How_to:_Upgrade][bookmark: _Toc210728684]How to: Upgrade from Earlier Versions to Visual C++ 10
Introduction
This walkthrough demonstrates how to convert an existing Visual C++ project (.vcproj) to the new Visual C++ project file format supported in Visual Studio 10.0 (.vcxproj). The new project format is compatible with MSBuild.
To build the new project, read the section “Using MSBuild To Build Your Project” in the topic titled Walkthrough: Using MSBuild to Create a Visual C++ Project.
Prerequisites
You need the following components to complete this walkthrough:
· Visual Studio 2010 CTP.
· A Visual C++ project file to convert. The project can be from either Visual Studio 2005 or Visual Studio 2008. The project file must be for a native (unmanaged) project.
Procedures
The first step is to open a 32-bit Visual Studio 10.0 command prompt. If you are using a 32-bit operating system, navigate the Start menu and select Start -> All Programs -> Microsoft Visual Studio 10.0 -> Visual Studio Tools -> Visual Studio 10.0 Command Prompt. If you are using a 64-bit operating system, you will need to go through the following steps.
To Open a 32-bit Visual Studio 10.0 Command Prompt in a 64-bit OS
1.	Create a shortcut for the VS 10.0 command prompt. You can find it in the Start menu: Start -> All Programs -> Microsoft Visual Studio 10.0 -> Visual Studio Tools -> Visual Studio 10.0 Command Prompt.
2.	Right-click on the shortcut and select the Properties option.
3.	Navigate to the Shortcut tab.
4.	Click on the Target: field and replace “%comspec% /k ""C:\Program Files (x86)\Microsoft Visual Studio 10.0\VC\vcvarsall.bat"" x86” with “C:\Windows\SysWOW64\cmd.exe /k ""C:\Program Files (x86)\Microsoft Visual Studio 10.0\VC\vcvarsall.bat"" x86”
5.	Double-click on the shortcut.
Note that you must open the command prompt as Administrator. To run the command prompt as Administrator, right-click on the shortcut and select “Run as administrator” from the context menu.
The next series of steps use the New Project System to convert a project.
To Convert a Project With the New Project System
1.	From the Visual Studio command prompt, enter the following command to change the active directory: cd “C:\Program Files\Microsoft Visual Studio 10.0\Common7\IDE”
2.	Run NewVcProjectSystem.cmd.
3.	Browse to the location where you have a Visual Studio 2005 or Visual Studio 2008 solution file for the native project that you want to convert.
4.	Run vcupgrade.exe <project file>
· For example: c:\MyProjects\MFC App>vcupgrade “MFC App\MFC App.vcproj”
Note To maintain a correct project-to-project reference, browse to the solution directory and then run vcupgrade.exe. In the above example, the MFC App.sln file is in the “c:\MyProjects\MFC App” directory.
This converts the project and places the new file (MFC App.vcxproj) in the same directory as the old project. Following the above example, the new project will be C:\MyProjects\MFC App\MFC App.vcxproj.
After you convert the project file, you must convert and build the solution file.
To manually convert and build the solution file
1.	Open the .sln file in a text editor.
2.	Replace all occurrences of “.vcproj” with “.vcxproj” in the solution file.
3.	Add <ProjectReference> for all the dependencies in the solution file. See How to:Create a Project-to-Project Reference.
4.	Open “MyProject.sln” in a text editor and look for dependencies:
Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = " MyProjectA", "MyProjectA\MyProjectA.vcproj", "{D227C620-29CE-4A24-AC17-0E83AE7552DB}"
ProjectSection(ProjectDependencies) = postProject
{C03DC4DB-2C71-45F5-AD47-DEAC38A13321} = {C03DC4DB-2C71-45F5-AD47-DEAC38A13321}
EndProjectSection
EndProject

Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = " MyProjectB ", "MyProjectB\MyProjectB.vcproj", "{C03DC4DB-2C71-45F5-AD47-DEAC38A13321}"
EndProject
In the above example, MyProjectA.vcproj depends on MyProjectB.vcproj
5.	Open the .vcxproj file and add a project reference to any projects your project depends on. For more information about creating a project reference, see How to:Create a Project-to-Project Reference. In the example above, add the following lines to create a project reference to MyProjectB.vcxproj.
<ProjectReference Include="..\ MyProjectB \ MyProjectB.vcxproj"/>
6.	To build the application, use Msbuild.exe <solution file>
· For example: c:\MyProjects\MFCApp>msbuild.exe MFCApp.sln

[bookmark: _Toc210113829][bookmark: _Toc210728685]Multi-targeting
This section contains the following walkthroughs.
· What’s New in Multi-Targeting
· Walkthrough: Multi-Targeting

[bookmark: _What’s_New_in][bookmark: _Toc210728686]What’s New in Multi-Targeting
Visual Studio 2010 CTP improves the multi-targeting experience by reflecting against the target .NET Framework version in the IDE. When your application targets an earlier Framework version, only the types and members that are available to that version will appear in IntelliSense, and in the Toolbox and the property grid. Also, not only does Visual Studio 2010 CTP support Framework versions 2.0 through 3.5, which are built on the 2.0 common language runtime (CLR), and Framework version 4.0, which is built on the 4.0 CLR, it will also automatically support any later versions that are built on the 4.0 CLR. To explore the new multi-targeting behavior, see Walkthrough: Multi-Targeting.

[bookmark: _Walkthrough:_Multi-Targeting][bookmark: _Toc210728687]Walkthrough: Multi-Targeting
Visual Studio 2010 improves significantly on the multi-targeting experience from VS 2008 by reflecting against the target .NET Framework version in the IDE. This means that features, such as Intellisense and the Toolbox, will show only those types, members, and controls available in the target version. In addition, while VS2008 only supports targeting to .NET Framework versions 2.0, 3.0, and 3.5, VS2010 has the flexibility to support any future .NET Framework versions built on the 4.0 CLR.
Note: Visual Studio 2010 runs on .NET Framework 4.0, which is built on CLR version 4.0. .NET Framework versions 2.x – 3.x are built on CLR 2.0.

Feature Comparison
The following table compares the multi-targeting support in Visual Studio versions 2008 and 2010.
	Feature
	VS 2008
	VS 2010

	Targeting range
	2.0, 3.0, 3.5 only
	2.0, 3.0, 3.5, 4.0 and future versions on 4.0 CLR

	IDE behavior
	Tools such as the Toolbox and Intellisense reflect all types available in .NET Framework version 3.5, regardless of targeting
	Tools reflect target .NET Framework version

Verifying the Current Target
The version number of the mscorlib assembly matches the current CLR version. The following procedure displays the current CLR by showing the current mscorlib version.
To verify the current target framework version
1.	In Visual Studio 2010, on the File menu, point to New and then click Project. Under Project types, select Visual C# (or Visual Basic) and then select Windows. Under Templates, double-click Console Application. The code file opens in the editor.
2.	Add the following code to the Main method.
C#
Console.WriteLine(typeof(object).Assembly.FullName);
Console.ReadKey();

Visual Basic
Console.WriteLine(GetType(Object).Assembly.FullName)
Console.ReadKey()

3.	Press F5 to run the code in debug mode.
4.	Look in the console output. The mscorlib version number is 4.0.0.0, which is the .NET Framework version.
Retargeting
You can set the target .NET Framework version for a project in Visual Studio by using the Project Properties UI.
To retarget by using Project Properties
1.	In Solution Explorer, right-click the project and then click Properties.
2.	(If you are using Visual Basic, click the Compile tab and then click Advanced Compile Options.) In the Target Framework list, select 3.5 and then reload the project when you are prompted.
3.	Press F5 to build and run.
Notice that the new version number is reported in the console output.
Error Scenarios
The following procedures demonstrate what happens when a .NET Framework version which is not present on the machine is selected, or when a project is retargeted to a .NET Framework version that does not the support its types and assemblies.
To demonstrate that a .NET Framework version is not installed
1.	Close the current project.
2.	On the File menu, point to Open and then click File. Browse to the project folder and then open the .csproj file (or .vbproj file).
3.	Change <TargetFrameworkVersion>v4.0</TargetFrameworkVersion> to <TargetFrameworkVersion>v3.14</TargetFrameworkVersion>. Save the file.
Setting the <TargetFrameworkVersion> attribute has the same effect as retargeting in the project properties.
4.	Reload the project.
The following dialog appears:
[image:]
5.	Click OK to retarget to 4.0.
To demonstrate that a new object is unavailable in an earlier version
1.	Add a using directive (Imports in Visual Basic) for the System.Numerics namespace.
2.	Add the following code, which uses a .NET Framework 4.0 type, to the Main method.
C#
BigInteger x = BigInteger.Parse(Console.ReadLine());
BigInteger y = BigInteger.Parse(Console.ReadLine());
Console.WriteLine("The GCD of the two numbers you passed in is {0}.",BigInteger.GreatestCommonDivisor(x, y));
Console.ReadKey();

Visual Basic
Dim x As BigInteger
Dim y As BigInteger
x = BigInteger.Parse(Console.ReadLine())
y = BigInteger.Parse(Console.ReadLine())
Console.WriteLine("The GCD of the two numbers you passed in is {0}.", _
 BigInteger.GreatestCommonDivisor(x, y))
Console.ReadKey()

Notice that IntelliSense appears correctly.
3.	Run the application.
It outputs the greatest common divisor of the two integers to the console.
4.	Re-target to .NET Framework 3.5.
5.	Run the application.
The build fails. In the code window, IntelliSense shows the System.Numerics.BigInteger type cannot be resolved.

[bookmark: _Toc210113830][bookmark: _Toc210728688]Office Development
This section contains the following walkthroughs.
· Walkthrough: Creating Your First Document-Level Customization for Word
· Walkthrough: Creating Your First Application-Level Add-in for Outlook
· Walkthrough: Creating a Custom Tab by Using the Ribbon Designer

[bookmark: _Walkthrough:_Creating_Your][bookmark: _Toc210728689]Walkthrough: Creating Your First Document-Level Customization For Word
Introduction
This introductory walkthrough shows you how to create a document-level customization for Microsoft Office Word. The features that you create in this kind of solution are available only when a specific document is open. You cannot use a document-level customization to make application-wide changes, for example, displaying a new Ribbon tab when any document is open.
This walkthrough illustrates the following tasks:
· Creating a Word document project for Word 2007.
· Adding text to the document that is hosted in the Visual Studio designer.
· Writing code that uses the object model of Word to add text to the customized document when it is opened.
· Building and running the project to test it.
· Cleaning up the project to remove unnecessary build files and security settings from your development computer.
Prerequisites
You need the following components to complete this walkthrough:
· Visual Studio Tools for Office in Visual Studio 2010 Customer Technology Preview 1
· Word 2007.
By default, Visual Studio Tools for Office is installed with Visual Studio Professional and higher.
Creating a new project
To create a new Word document project in Visual Studio
1.	Start Visual Studio.
2.	On the File menu, point to New, and then click Project.
3.	In the Project Types pane, expand Visual C# or Visual Basic, and then expand Office.
4.	Select the 2007 folder if you are developing a Word 2007 customization.
Note If you are developing a document-level customization for a particular version of Word, that version must be installed on your development computer.
5.	In the Templates pane, select Word 2007 Document.
6.	In the Name box, type FirstDocumentCustomization.
7.	Click OK.
The Visual Studio Tools for Office Project Wizard opens.
8.	Select Create a new document, and click OK.
Visual Studio creates the FirstDocumentCustomization project, and adds the FirstDocumentCustomization document and ThisDocument code file to the project. The FirstDocumentCustomization document is opened automatically in the designer.
Closing and Reopening the Document in the Designer
If you deliberately or accidentally close the document in the designer while you are developing your project, you can reopen it.
To close and reopen the document in the designer
1.	Close the document by clicking the Close button (X) for the designer window.
2.	In Solution Explorer, right-click the ThisDocument code file, and click View Designer -or -In Solution Explorer, double-click the ThisDocument code file.
Adding Text to the Document in the Designer
You can design the user interface (UI) of your customization by modifying the document that is open in the designer. For example, you can add text, tables, or Word controls.
To add text to your document by using the designer
· In the document that is open in the designer, type the following text:
This text was added by using the designer.
Adding Text to the Document Programmatically
Next, add code to the ThisDocument code file. The new code uses the object model of Word to add a second paragraph of text to the document. By default, the ThisDocument code file contains the following generated code:
· A partial definition of the ThisDocument class, which represents the programming model of the document and provides access to the object model of Word. The remainder of the ThisDocument class is defined in a hidden code file that you should not modify.
· The ThisDocument_Startup and ThisDocument_Shutdown event handlers. These event handlers are called when the document is opened and closed. Use these event handlers to initialize your customization when the document is opened, and to clean up resources used by your customization when the document is closed.
To add a second paragraph of text to the document by using code
· In Solution Explorer, right-click ThisDocument, and then click View Code.
The code file opens in Visual Studio.
Replace the ThisDocument_Startup event handler with the following code. When the document is opened, this code adds a second paragraph of text to the document.
Visual Basic
 Private Sub ThisDocument_Startup(_
 ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup
 Me.Paragraphs(1).Range.InsertParagraphAfter()
 Me.Paragraphs(2).Range.Text = "This text was added by using code."
 End Sub

C#
 private void ThisDocument_Startup(object sender, System.EventArgs e)
 {
 this.Paragraphs[1].Range.InsertParagraphAfter();
 this.Paragraphs[2].Range.Text =
 "This text was added by using code.";
 }

Note This code uses the index value 1 to access the first paragraph in the Paragraphs property. Although Visual Basic and Visual C# use 0-based arrays, the lower array bounds of most collections in the Word object model is 1.
Testing the Project
To test your document
1.	Press F5 to build and run your project.
When you build the project, the code is compiled into an assembly that is associated with the document. Visual Studio puts a copy of the document and the assembly in the build output folder for the project, and it configures the security settings on the development computer to enable the customization to run.
2.	In the document, verify that you see the following text.
This text was added by using the designer.
This text was added by using code.
3.	Close the document.
Cleaning up the Project
When you finish developing a project, you should remove the files in the build output folder and the security settings created by the build process.
To clean up the completed project on your development computer
· In Visual Studio, on the Build menu, click Clean Solution.
[bookmark: _Walkthrough:_Creating_Your_1][bookmark: _Walkthrough:_Creating_Your_2][bookmark: _Toc210728690]Walkthrough: Creating Your First Application-Level Add-in for Outlook
Introduction
This walkthrough shows you how to create an application-level add-in for Microsoft Office Outlook. The features that you create in this kind of solution are available to the application itself, regardless of which Outlook item is open.
This walkthrough illustrates the following tasks:
· Creating an Outlook add-in project for Outlook 2007.
· Writing code that uses the object model of Outlook to add text to the subject and body of a new mail message.
· Building and running the project to test it.
· Cleaning up the completed project so that the add-in no longer runs automatically on your development computer.
Note Your computer might show different names or locations for some of the Visual Studio user interface elements in the following instructions. The Visual Studio edition that you have and the settings that you use determine these elements.
Prerequisites
You need the following components to complete this walkthrough:
· Visual Studio Tools for Office in Visual Studio 2010 Customer Technology Preview 1
· Outlook 2007.
By default, Visual Studio Tools for Office is installed with Visual Studio Professional and higher.
Creating the Project
To create a new Outlook project in Visual Studio
1.	Start Visual Studio.
2.	On the File menu, point to New, and then click Project.
3.	In the Project Types pane, expand Visual C# or Visual Basic, and then expand Office.
4.	Select the 2007 folder if you are developing an add-in for Outlook 2007.
Note If you are developing an add-in for a particular version of Outlook, that version must be installed on your development computer.
5.	In the Templates pane, select Outlook 2007 Add-in.
6.	In the Name box, type FirstOutlookAddIn.
7.	Click OK.
Visual Studio creates the FirstOutlookAddIn project and opens the ThisAddIn code file in the editor.
Writing Code that Adds Text to Each New Mail Message
Next, add code to the ThisAddIn code file. The new code uses the object model of Outlook to add text to each new mail message. By default, the ThisAddIn code file contains the following generated code:
· A partial definition of the ThisAddIn class. This class provides an entry point for your code and provides access to the object model of Outlook. The remainder of the ThisAddIn class is defined in a hidden code file that you should not modify.
· The ThisAddIn_Startup and ThisAddIn_Shutdown event handlers. These event handlers are called when Outlook loads and unloads your add-in. Use these event handlers to initialize your add-in when it is loaded, and to clean up resources used by your add-in when it is unloaded.
To add text to the subject and body of each new mail message
1.	In the ThisAddIn code file, declare a field named inspectors in the ThisAddIn class. The inspectors field maintains a reference to the collection of Inspector windows in the current Outlook instance. This reference prevents the garbage collector from freeing the memory that contains the event handler for the NewInspector event.
Visual Basic
 Private WithEvents inspectors As Outlook.Inspectors

Visual C#
 Outlook.Inspectors inspectors;

Replace the ThisAddIn_Startup method with the following code. This code attaches an event handler to the NewInspector event.
Visual Basic
 Private Sub ThisAddIn_Startup(_
 ByVal sender As Object,
 ByVal e As System.EventArgs) Handles Me.Startup
 inspectors = Me.Application.Inspectors
 End Sub

Visual C#
 private void ThisAddIn_Startup(object sender, System.EventArgs e)
 {
 inspectors = this.Application.Inspectors;
 inspectors.NewInspector +=
 new Microsoft.Office.Interop.Outlook.
 InspectorsEvents_NewInspectorEventHandler(
 Inspectors_NewInspector);
 }

3.	In the ThisAddIn code file, add the following code to the ThisAddIn class. This code defines an event handler for the NewInspector event.
When the user creates a new mail message, this event handler adds text to the subject line and body of the message.
Visual Basic
 Private Sub inspectors_NewInspector(_
 ByVal Inspector As Microsoft.Office.Interop.Outlook.Inspector) _
 Handles inspectors.NewInspector
 Dim mailItem As Outlook.MailItem = _
 CType(Inspector.CurrentItem, Outlook.MailItem)
 If Not (mailItem Is Nothing) Then
 If mailItem.EntryID Is Nothing Then
 mailItem.Subject = "This text was added by using code"
 mailItem.Body = "This text was added by using code"
 End If
 End If
 End Sub

Visual C#
 void Inspectors_NewInspector(
 Microsoft.Office.Interop.Outlook.Inspector Inspector)
 {
 Outlook.MailItem mailItem =
 (Outlook.MailItem)Inspector.CurrentItem;
 if (mailItem != null)
 {
 if (mailItem.EntryID == null)
 {
 mailItem.Subject = "This text was added by using code";
 mailItem.Body = "This text was added by using code";
 }

 }
 }

To modify each new mail message, the previous code examples use the following objects:
· The Application field of the ThisAddIn class. The Application field returns an Application object, which represents the current instance of Outlook.
· The Inspector parameter of the event handler for the NewInspector event. The Inspector parameter is an Inspector object, which represents the Inspector window of the new mail message.
Testing the Project
When you build and run the project, verify that the text appears in the subject line and body of a new mail message.
To test the project
1.	Press F5 to build and run your project.
When you build the project, the code is compiled into an assembly that is included in the build output folder for the project. Visual Studio also creates a set of registry entries that enable Outlook to discover and load the add-in, and it configures the security settings on the development computer to enable the add-in to run.
2.	In Outlook, create a new mail message.
3.	Verify that the following text is added to both the subject line and body of the message.
This text was added by using code.
4.	Close Outlook.
Cleaning up the Project
When you finish developing a project, remove the add-in assembly, registry entries, and security settings from your development computer. Otherwise, the add-in will run every time that you open Outlook on the development computer.
To clean up your project
· In Visual Studio, on the Build menu, click Clean Solution.
[bookmark: _Walkthrough:_Creating_a][bookmark: _Toc210728691]Walkthrough: Creating a Custom Tab by Using the Ribbon Designer
Introduction
This walkthrough demonstrates how to create a custom Ribbon tab by using the Ribbon Designer. You can use the Ribbon Designer to add and position controls on the custom tab.
This walkthrough illustrates the following tasks:
· Creating actions panes.
· Creating a custom tab.
· Hiding and showing actions panes by using buttons on the custom tab.
Note Your computer might show different names or locations for some of the Visual Studio user interface elements in the following instructions. The Visual Studio edition that you have and the settings that you use determine these elements.
Prerequisites
You need the following components to complete this walkthrough:
· Visual Studio Tools for Office in Visual Studio 2010 Customer Technology Preview 1
· Microsoft Office Excel 2007.
By default, Visual Studio Tools for Office is installed with Visual Studio Professional and higher.
Creating an Excel Workbook Project
The steps for using the Ribbon Designer are almost identical for all Office applications. This example uses an Excel workbook.
To create an Excel workbook project
· Create an Excel 2007 workbook project with the name MyExcelRibbon.
Visual Studio opens the new workbook in the designer and adds the MyExcelRibbon project to Solution Explorer.
Creating Actions Panes
Add two custom actions panes to the project. You will later add buttons to the custom tab that show and hide these actions panes.
To create actions panes
1.	On the Project menu, click Add New Item.
2.	In the Add New Item dialog box, select ActionsPaneControl, and then click Add.
3.	The ActionsPaneControl1.cs or ActionsPaneControl1.vb file opens in the designer.
4.	From the Common Controls tab of the Toolbox, add a label to the designer surface.
5.	In the Properties window, set the Text property of label1 to Actions Pane 1.
Repeat steps 1 through 5 to create a second actions pane and label. Set the Text property of the second label to Actions Pane 2.
Creating a Custom Tab
One of the Office application design guidelines is that users should always have control of the Office application UI. To add this capability for the actions panes, you can add buttons that show and hide each actions pane from a custom tab on the Ribbon. To create a custom tab, add a Ribbon (Visual Designer) item to the project. The designer helps you add and position controls, set control properties, and handle control events.
To create a custom tab
1.	On the Project menu, click Add New Item.
2.	In the Add New Item dialog box, select Ribbon (Visual Designer).
3.	Change the name of the new Ribbon to MyRibbon, and click Add.
The MyRibbon.cs or MyRibbon.vb file opens in the Ribbon Designer and displays a default tab and group.
4.	In the Ribbon Designer, click group1.
5.	In the Properties window, set Label to Actions Pane Manager.
6.	From the Office Ribbon Controls tab of the Toolbox, drag a button onto group1.
7.	Click button1 to select it.
8.	In the Properties window, set Label to Show Actions Pane 1.
9.	Add a second button to group1, and set the Label property to Show Actions Pane 2.
10.	From the Office Ribbon Controls tab of the Toolbox, drag a ToggleButton control onto group1.
11.	Set the Label property to Hide Actions Pane.
Hiding and Showing Actions Panes by Using Buttons on the Custom Tab
The last step is to add code that responds to the user. Add event handlers for the Click events of the two buttons and the Click event of the toggle button. Add code to these event handlers that hide and show the actions panes.
To hide and show actions panes by using buttons in the custom tab
1.	In Solution Explorer, right-click MyRibbon.cs or MyRibbon.vb, and then click View Code.
2.	Add the following code to the top of the MyRibbon class. This code creates two actions pane objects.
Visual Basic
 Dim actionsPane1 As New ActionsPaneControl1()
 Dim actionsPane2 As New ActionsPaneControl2()

Visual C#
 ActionsPaneControl1 actionsPane1 = new ActionsPaneControl1();
 ActionsPaneControl2 actionsPane2 = new ActionsPaneControl2();
In C#, you must add the following event handlers to the constructor.
Visual C#
 this.button1.Click += new System.EventHandler
 <Microsoft.Office.Tools.Ribbon.RibbonControlEventArgs>
 (this.button1_Click);
 this.button2.Click += new System.EventHandler
 <Microsoft.Office.Tools.Ribbon.RibbonControlEventArgs>
 (this.button2_Click);
 this.toggleButton1.Click += new System.EventHandler
 <Microsoft.Office.Tools.Ribbon.RibbonControlEventArgs>
 (this.toggleButton1_Click);
 this.Load += new System.EventHandler
 <Microsoft.Office.Tools.Ribbon.RibbonUIEventArgs>
 (this.MyRibbon_Load);

Add the following code to the MyRibbon_Load event. This code adds the actions pane objects to the actions pane Microsoft.Office.Tools.ActionsPane.Controls collection and hides the objects from view.
Visual Basic
 Private Sub MyRibbon_Load(ByVal sender As System.Object, _
 ByVal e As Microsoft.Office.Tools.Ribbon.RibbonUIEventArgs) _
 Handles MyBase.Load

 Globals.ThisWorkbook.ActionsPane.Controls.Add(actionsPane1)
 Globals.ThisWorkbook.ActionsPane.Controls.Add(actionsPane2)
 actionsPane1.Hide()
 actionsPane2.Hide()
 Globals.ThisWorkbook.Application.DisplayDocumentActionTaskPane = False
 End Sub

Visual C#
 private void MyRibbon_Load(object sender, RibbonUIEventArgs e)
 {
 Globals.ThisWorkbook.ActionsPane.Controls.Add(actionsPane1);
 Globals.ThisWorkbook.ActionsPane.Controls.Add(actionsPane2);
 actionsPane1.Hide();
 actionsPane2.Hide();
 Globals.ThisWorkbook.Application.DisplayDocumentActionTaskPane = false;
 }

5.	Add the following three event handler methods to the MyRibbon class. These methods handle the Click events of the two buttons and the Click event of the toggle button. The event handlers for button1 and button2 show alternate actions panes. The event handler for toggleButton1 shows and hides the active actions pane.
Visual Basic
 Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As Microsoft.Office.Tools.Ribbon.RibbonControlEventArgs) _
 Handles Button1.Click
 Globals.ThisWorkbook.Application._
 DisplayDocumentActionTaskPane = True
 actionsPane2.Hide()
 actionsPane1.Show()
 End Sub

 Private Sub Button2_Click(ByVal sender As System.Object, _
 ByVal e As Microsoft.Office.Tools.Ribbon.RibbonControlEventArgs) _
 Handles Button2.Click

 Globals.ThisWorkbook.Application._
 DisplayDocumentActionTaskPane = True
 actionsPane1.Hide()
 actionsPane2.Show()

 End Sub

 Private Sub ToggleButton1_Click(ByVal sender As System.Object, _
 ByVal e As Microsoft.Office.Tools.Ribbon.RibbonControlEventArgs) _
 Handles ToggleButton1.Click

 If ToggleButton1.Checked Then
 Globals.ThisWorkbook.Application._
 DisplayDocumentActionTaskPane = False
 Else
 Globals.ThisWorkbook.Application._
 DisplayDocumentActionTaskPane = True
 End If

 End Sub

Visual C#
 private void button1_Click(object sender, RibbonControlEventArgs e)
 {
 Globals.ThisWorkbook.Application.DisplayDocumentActionTaskPane =
 true;
 actionsPane2.Hide();
 actionsPane1.Show();
 }

 private void button2_Click(object sender, RibbonControlEventArgs e)
 {
 Globals.ThisWorkbook.Application.DisplayDocumentActionTaskPane =
 true;
 actionsPane1.Hide();
 actionsPane2.Show();

 }

 private void toggleButton1_Click(object sender,
 RibbonControlEventArgs e)
 {
 if (toggleButton1.Checked == true)
 {
 Globals.ThisWorkbook.Application.
 DisplayDocumentActionTaskPane = false;
 }
 else
 {
 Globals.ThisWorkbook.Application.
 DisplayDocumentActionTaskPane = true;
 }

 }

Testing the Custom Tab
When you run the project, Excel starts, The Add-Ins tab appears on the Ribbon. Click the buttons on Add-Ins to show and hide the actions panes.
To test the custom tab
1.	Press F5 to run your project.
2.	Click the Add-Ins tab.
3.	In the Custom Actions Pane Manager group, click Show Actions Pane 1.
The actions pane appears and displays the label Actions Pane 1.
4.	Click Show Actions Pane 2.
The actions pane appears and displays the label Actions Pane 2.
5.	Click Hide Actions Pane.
The actions panes are no longer visible.
Cleaning up the Project
When you finish developing a project, remove the add-in assembly, registry entries, and security settings from your development computer. Otherwise, the add-in will run every time that you open Outlook on the development computer.
To clean up your project
· In Visual Studio, on the Build menu, click Clean Solution.
[bookmark: _Toc210113831][bookmark: _Toc210728692]
Parallel Computing
This section contains the following walkthroughs.
· Parallel Debugging Toolwindows in Visual Studio 2010
· Parallel Programming with the .NET Framework 4.0
· Parallel Programming with the Concurrency Runtime & the Parallel Pattern Library
· Parallel Profiling Views in Visual Studio 2010

[bookmark: _Parallel_Debugging_Toolwindows][bookmark: _Toc210728693]Parallel Debugging Toolwindows in Visual Studio 2010
The .NET Framework v4.0 includes new library-based support for task parallelism via new types, provided through the System.Threading.Tasks namespace. It makes it easier for developers to write programs that scale to take advantage of parallel hardware, providing improved performance as the numbers of cores and processors increase, without having to deal with many of the complexities of today’s thread-focused programming models. A side effect is that the existing Threads and Call Stack windows are not ideal for showing the runtime information when you are using the new Task-focused programming model.
In this walkthrough, you will learn how to use the new debugger Tasks and Multi Stack windows for understanding and verifying the runtime behavior of code that uses the new Task Parallel Library APIs. Given some code that uses TPL, you will break in the debugger and use the new tool windows.
Tasks illustrated in this walkthrough include:
· How to view the list of System.Threading.Tasks.Task instances running in your application.
· How to view the real call stacks for Task instances.
· How to navigate to code from the Tasks and Multi Stack window.
The precise demo code utilized to demonstrate usage of the new windows is not important. Any random code that uses Task types can be used, because the goal of this walkthrough is not to achieve something in code, but to understand how to use the windows.
Prerequisites
Before starting this walkthrough, you should have the Visual Studio 2010 CTP installed directly on your quad core Windows Vista machine, not in a virtual machine. Trying the walkthrough in a Virtual Machine or on a dual core machine will work, but results may vary from the ones listed below.
You will also need the mscorlib.pdb (under C:\Windows\Microsoft.NET\Framework\v4.0.<buildno>) symbols loaded during debugging. If you hit a breakpoint and the Tasks or MultiStack windows do not show data, then you have not loaded the symbols. Verify this through the Modules toolwindow.
Note, that the screenshots taken below were taken with the "Just My Code" feature disabled (Tools -> Options -> Debugger). This is not a requirement, just an explanation if you observe different results on your machine (in particular on BP #3 in the MultiStack window).
Create an empty Console project targeting .NET Framework v4.0
1.	In Visual Studio 2010 open the new project dialog (File -> New Project).
2.	Select Visual C# in the TreeView. Ensure that the combobox on the top right displays ".NET Framework 4.0".
3.	Select Console Application and click OK. Remain in DEBUG configuration, which is the default.
4.	The Program.cs file is now open. Clear/delete all the default code (Ctrl+A, Del) so to end up with an empty code file.
Add some demo code and breakpoints
1.	Paste the following code into the empty code file.
C# code
using System;
using System.Threading;
using System.Threading.Tasks;
using System.Diagnostics;

class P
{
 static void Main()
 {
 TaskManager tm = TaskManager.Default;
 if (Environment.ProcessorCount < 4)
 {
 tm = new TaskManager(new TaskManagerPolicy(1, 4, 4));
 }
 Task.StartNew(M, 9, tm);
 Task.StartNew(M, 8, tm);
 Task.StartNew(M, 7, tm);
 Task.StartNew(M, 6, tm);
 Console.ReadLine();
 }
 static int a = 0;
 static int b = 0;
 static bool c = false;
 static bool d = false;
 static void M(object o)
 {
 O(o);
 }
 static void O(object o)
 {
 int temp = (int)o;

 Interlocked.Increment(ref a);
 while (a < 4)
 {
 ;
 }

 switch (temp)// BP #1 INSERT BREAKPOINT
 {
 case 6:
 I(o);
 break;
 default:
 T(o);
 break;
 }
 }
 static void I(object o)
 {
 C(o);
 }
 static void T(object o)
 {
 H(o);
 }
 static void H(object o)
 {
 Interlocked.Increment(ref b);
 while (!c)
 {
 ;
 }

 int temp = (int)o;

 if (temp == 9)
 {
 Task.StartNew(D, 5);
 }
 else
 {
 while (!d)
 {
 ;
 }
 switch (temp)
 {
 case 7:
 E(o);
 break;
 case 8:
 F(o);
 break;
 }
 }
 }
 static void C(object o)
 {
 while (b < 3)
 {
 ;
 }
 c = true;// BP #2 INSERT BREAKPOINT
 while (!d)
 {
 ;
 }

 }
 static void D(object o)
 {
 d = true;// BP #3 INSERT BREAKPOINT
 }
 static void E(object o)
 {
 K(o);
 }
 static void K(object o)
 {
 G(o);
 }
 static void F(object o)
 {
 G(o);
 }
 static void G(object o)
 {
 Thread.SpinWait(90000000);
 }// BP #4 INSERT BREAKPOINT
}

2.	Add 4 (four) breakpoints at every line that has a comment "Insert Breakpoint". To insert a breakpoint, place the cursor on the line number and then right-click to bring the context menu up and select Breakpoint followed by Insert Breakpoint.
3.	Save (File -> Save All) and rebuild (Build -> Rebuild Solution).
Using the Tasks window
1.	Start debugging the application (Debug -> Start Debugging).
2.	When the first breakpoint is hit (BP #1), open the Threads window (Debug -> Windows -> Threads) and dock it somewhere at the bottom of Visual Studio.
[image:]
3.	Notice how multiple threads are displayed and it is not immediately obvious which ones are assigned to the Tasks that you created in code. To discover the relationship, double-click on each Thread to navigate to code. There is a better way as per the next step.
4.	Open the new Tasks window (Debug -> Windows -> Tasks) and dock it somewhere at the bottom of Visual Studio. Observe how it only lists Tasks and not Threads, thus matching the level of abstraction that you are programming at. Cross reference the Thread Ids with the ones displayed in the Threads window to verify your findings from step 3.
[image:]
5.	Resume execution until the second breakpoint (BP #2) is hit (Debug -> Continue). Use the Tasks window to identify where each Task is executing. Click on the Location column to sort by Task Location. Right-click on the Thread Assignment column and select Group By This Field, to view what Tasks are assigned to the Thread. Use the other menu items on the context menu, for example: right-click on the Name column and select Remove This Column.
[image:]
6.	Resume execution until the third breakpoint (BP #3) is hit (Debug -> Continue). In the Tasks window, right-click on the Parent column and select Group By This Field, to view a TreeView structure clearly depicting the parent child relationship of the Tasks – for the CTP, you will need to manually expand the treeview and to resize the Id column to fit it. Click on each node glyph to expand the treenodes. Also observe that the Tasks window shows Tasks that have executed but are now waiting:
[image:]
7.	Open the Call Stack window (Debug -> Windows -> Call Stack). In the Tasks window, double-click on each running Task to change the current underlying Thread and each time observe the Call Stack window, which displays a full call stack of the assigned Thread instead of the Task-specific call stack segment. To get an accurate view of the call stack of each Task, hover over the Task of interest and observe the correct call stack in the tooltip – contrasting with the Call Stack info which is clearly for the Thread, and not for the Task.
[image:]
8.	Resume execution until the fourth and final breakpoint (BP #4) is hit (Debug -> Continue). Notice how only 2 Tasks are listed in the Tasks window – the other 3 have completed. Now switch to the Threads window to observe how it still shows multiple threads: this highlights again the value of the Tasks window that filters out the noise and only shows you Tasks.
Using the MultiStack window
1.	End the Program so you can exit debugging. Start debugging the application again (Debug -> Start Debugging).
2.	When the first breakpoint is hit (BP #1), open the Multi Stack window (Debug -> Windows -> Multi Stack) to show the call stacks of all Tasks shown in parallel in a single view, without needing to hover over the Tasks in the Tasks window. Observe how the Multi Stack window visually conveys additional information about which call stack frames are shared by multiple Tasks (by grouping them into a call stack segment box). “x4” is interpreted as “4 Tasks are sharing this call stack”. Also notice how the tooltip on a method (e.g. M) shows more info about the 4 stack frames.
[image:]
3.	Right-click on the M stack frame and expand the Select Task menu item. You can see the 4 Tasks that share this call stack segment box, and hence this stack frame. From the menu select the Tasks in turn to set the next statement and observe the Tasks window (among others in the IDE) reflecting the change.
[image:]
4.	Resume execution (Debug -> Continue) until the application stops again on the second breakpoint (BP #2). Note the new picture clearly showing the execution paths that each Task took and which call stack segments are shared.
[image:]
5.	Resume execution (Debug -> Continue) until the application stops on the third breakpoint (BP #3). Notice how the parent child relationship is not shown explicitly in this view, but you can clearly see the child Task executing in method D; the parent Task is not executing user code, rather it is in framework code WaitingForChildren.
[image:]

6.	Resume execution (Debug -> Continue) until the application stops on the fourth and final breakpoint (BP #4). Single click on a stack frame to highlight it and any other occurrences on the diagram, thus quickly identifying areas of code that are accessed by different code paths. For example, click on the G stack frame.
[image:]
Summary
In this walkthrough you were introduced to the new debugger windows: Tasks and Multi Stack. Now you are ready to use these windows on your real projects that use multi-threaded code, rather than the somewhat arbitrary code we used here.

[bookmark: _Parallel_Programming_with][bookmark: _Toc210728694]Parallel Programming with the
.NET Framework 4.0
The .NET Framework 4.0 includes new library-based support for data parallelism, task parallelism, and coordination on parallel hardware, all unified by a common work scheduler. These new types, provided through the System.Threading, System.Threading.Tasks, System.Linq, and System.Collections.Concurrent namespaces, make it easier for developers to write programs that scale to take advantage of parallel hardware, providing improved performance as the numbers of cores and processors increase, without having to deal with many of the complexities of today’s thread-focused programming models.
In this walkthrough, you will learn to parallelize a simple example application using this new support in the .NET Framework 4.0. Tasks illustrated in this walkthrough include:
· How to parallelize an algorithm with the System.Threading.Parallel class
· How to parallelize an algorithm using Parallel LINQ
The application to be parallelized is a simple primality tester.
Prerequisites
Before starting this walkthrough, you must have the .NET Framework 4.0 installed, and you should be using a machine with multiple cores and an operating system environment that recognizes multiple logical processors. While this walkthrough can be used in a Virtual PC image on a multi-core machine, it’s likely that the hosted operating system running the .NET Framework 4.0 will only recognize one processor.
Creating the project
1.	On the File menu, click New | Project. The New Project dialog box appears.
2.	In the Project Types list, click Visual C#. In the Templates list, click Console Application.
3.	Click Ok to create the Console Application project.
The newly created project will be opened. Next, you’ll add code to implement the sequential algorithm using a for loop that you’ll subsequently parallelize using the System.Threading.Parallel class.
To implement the sequential algorithm using a for loop
1.	Add the following code to the Program class:
Visual C# code
static bool IsPrime(int valueToTest)
{
 int upperBound = (int)Math.Sqrt(valueToTest);
 for (int i = 2; i <= upperBound; i++)
 {
 if (valueToTest % i == 0) return false;
 }
 return true;
}

This code implements a simple and naïve primality test, returning a Boolean value that indicates whether the provided integral value is a prime number.
2.	Add the following code to the Main method of the Program class:
Visual C# code
const int UPPER_BOUND = 2000000;

while (true)
{
 int totalPrimes = 0;
 var sw = System.Diagnostics.Stopwatch.StartNew();
 for (int i = 2; i < UPPER_BOUND; i++)
 {
 if (IsPrime(i)) totalPrimes++;
 }
 Console.WriteLine("Sequential: {0} found in {1}",
 totalPrimes, sw.Elapsed);

 // ... additional code to be added here

 Console.ReadLine();
}

This code iterates from one to two million, counting the number of prime numbers that are found in the interval. Upon completion, it outputs to the console window the number of primes discovered, along with the amount of time it took to execute the loop.
3.	From the Debug menu, click Start Debugging to execute the application.
The application should write out to the console window that it discovered 148,933 prime numbers, along with the amount of time required, which is likely a few seconds.
To parallelize the algorithm using a Parallel.For loop
1.	Add the following using directive to the top of the Program.cs code file:
Visual C# code
using System.Threading;

2.	Replace the comment “// ... additional code to be added here” with the following code:
Visual C# code
totalPrimes = 0;
sw = System.Diagnostics.Stopwatch.StartNew();
Parallel.For(2, UPPER_BOUND, i =>
{
 if (IsPrime(i)) totalPrimes++; // Bug: see below
});
Console.WriteLine("Parallel : {0} found in {1}",
 totalPrimes, sw.Elapsed);

This code is almost identical to the previous sequential implementation. Instead of a for loop, however, it uses the Parallel class (from the System.Threading namespace) to parallelize the processing of the for loop, using the static For method.
3.	From the Debug menu, click Start Debugging to execute the application.
As in the previous run, the application should write out to the console window that the sequential implementation discovered 148,933 prime numbers, along with the amount of time required. The time displayed for the parallel implementation should also be smaller than that output for the sequential algorithm. For example, on a dual-core computer, the output time for the parallel algorithm is likely close to half that output for the sequential algorithm. However, the parallel implementation we just implemented likely outputs a smaller number of primes than does the sequential implementation. This is a bug in our code. The issues is that multiple threads (used implicitly by Parallel.For) are now racing to increment the totalPrimes variable, but these increment operations are not atomic and some updates are getting lost in the process.
4.	To fix the bug in the previous code snippet, replace the code that increments totalPrimes with a call to Interlocked.Increment, as shown here:
Visual C# code
totalPrimes = 0;
sw = System.Diagnostics.Stopwatch.StartNew();
Parallel.For(2, UPPER_BOUND, i =>
{
 if (IsPrime(i)) Interlocked.Increment(ref totalPrimes);
});
Console.WriteLine("Parallel : {0} found in {1}",
 totalPrimes, sw.Elapsed);

5.	From the Debug menu, click Start Debugging to execute the application.
The new output should now still show a parallel speedup of execution, but the number of primes discovered in both the sequential and parallel implementations should be identical.
To implement the sequential algorithm using LINQ:
1.	Remove all of the code added to the Main method. Then add the following code to Main:
Visual C# code
const int UPPER_BOUND = 2000000;

while (true)
{
 var sw = System.Diagnostics.Stopwatch.StartNew();
 int totalPrimes =
 (from i in Enumerable.Range(2, UPPER_BOUND-2)
 where IsPrime(i)
 select i).Count();
 Console.WriteLine("Sequential: {0} found in {1}",
 totalPrimes, sw.Elapsed);

 // ... additional code to be added here

 Console.ReadLine();
}

This code implements the same sequential primality tests shown earlier, this time using Language Integrated Query (LINQ).
2.	From the Debug menu, click Start Debugging to execute the application.
As with the for loop-based algorithm, the application should write out to the console window that it discovered 148,933 prime numbers, along with the amount of time required.
To parallelize the algorithm using Parallel LINQ (PLINQ)
1.	Replace the comment “// ... additional code to be added here” with the following code:
Visual C# code
totalPrimes = 0;
sw = System.Diagnostics.Stopwatch.StartNew();
totalPrimes =
 (from i in Enumerable.Range(2, UPPER_BOUND-2).AsParallel()
 where IsPrime(i)
 select i).Count();
Console.WriteLine("Parallel : {0} found in {1}",
 totalPrimes, sw.Elapsed);

This code is almost identical to the previous sequential LINQ implementation, the primary difference being that it includes “.AsParallel()” added onto the end of the call to Enumerable.Range.
2.	From the Debug menu, click Start Debugging to execute the application.
Both the sequential and parallel implementations should output that they discovered 148,933 prime numbers. As with the for loop-based implementations, the parallel version should be significantly faster than the sequential implementation.
This short walkthrough has demonstrated that the .NET Framework 4.0 provides new constructs to enable developers to more easily take full advantage of their multi-core machines.

[bookmark: _Parallel_Programming_with_1][bookmark: _Toc210728695]Parallel Programming with the Concurrency Runtime & the Parallel Pattern Library
In this walkthrough, you will build a simple C++ application and parallelize it using the Parallel Pattern Library & agents APIs. This application will involve checking a series of numbers for primality and counting them, then parallelizing that application with the PPL and with agents
Prerequisites:
To complete this walkthrough, you must install the Visual Studio 2010 CTP.
While this walkthrough can be used in a Virtual PC image on a multi-core machine, it’s likely that the hosted operating system will only recognize one processor and you may not see any speedups.
Sections
This walkthrough has the following sections:
· Creating a new console Application
· Implement an IsPrime function and timing it serially
· Parallelize the call to IsPrime with parallel_for
· Separate the work with asynchronous messaging
To create a new console Application
1.	On the File menu, click New | Project. The New Project dialog box appears.
2.	In the New Project dialog box, expand the Visual C++ node in the project types pane and select Win32 Console Application. Type a name for the project, such as ParallelSample and click OK.
3.	In the Win32 Application Wizard dialog box, click Finish to create the Console Application project.
To implement an isPrime function
1.	Add the following function to your ParallelSample.CPP file.

C++ Code
bool IsPrime(int value){
 if (value < 2) {
 return false;
 }
 for (int i = 2; i * i <= value; ++i) {
 if (value % i == 0) {
 return false;
 }
 }
 return true;
};

This code implements a simple and naïve primality test and returns a bool that indicates whether the provided integer is a prime number.
2.	Include the windows header so that you can use GetTickCount() to time the call and include <math.h> so that we have access to sqrt by adding the following code to the top of ParallelSample.cpp:
#include <windows.h>
#include <math.h>

3.	Add the following code to the main function:
C++ code
void main(){
 const int count = 10000000;
 long totalPrimes = 0;
 int start, end;

 //execute serially
 start = GetTickCount();
 for(int i = 1;i < count;++i){
 if (IsPrime(i))
 ++totalPrimes;
 }
 end = GetTickCount();
 printf("Found %d prime numbers \n",totalPrimes);
 printf("Elapsed time for serial execution was: %dms\n",end-start);
}

This code iterates from one to ten million, counting the number of prime numbers that are found in the interval. Upon completion, it outputs to the console window the number of primes discovered, along with the amount of time it took to execute the loop.
4.	From the Debug menu, click Start Debugging to execute the application.
The application should write out to the console window that it discovered 664,579 prime numbers, along with the amount of time required, which is likely several seconds.
To parallelize the call to isprime using parallel_for
1.	Add the following include and file and using directive to the top of ParallelSample.cpp:
C++ code
#include <ppl.h>
using namespace Concurrency;

2.	Add the following code to your main function:
C++ code
//execute in parallel
totalPrimes = 0;
start = GetTickCount();
parallel_for(1,count,1,[&](int i){
 if (IsPrime(i))
 ++totalPrimes; //Bug: see below
});
end = GetTickCount();

printf("Found %d prime numbers in parallel\n",totalPrimes);
printf("Elapsed time for parallel execution was: %dms\n",end-start);

This code is almost identical to the previous sequential implementation. Instead of a for loop, however, it uses the parallel_for template method in ppl.h to parallelize the processing of the for loop.
3.	From the Debug menu, click Start Debugging to execute the application.
As in the previous run, the application should write out to the console window that the sequential implementation discovered 148,933 prime numbers, along with the amount of time required. The time displayed for the parallel implementation should also be smaller than that output for the sequential algorithm. For example, on a dual-core computer, the output time for the parallel algorithm is likely close to half that output for the sequential algorithm. However, the parallel implementation we just implemented likely outputs a smaller number of primes than does the sequential implementation. This is a bug in our code. The issues is that multiple threads (used implicitly by Parallel.For) are now racing to increment the totalPrimes variable, but these increment operations are not atomic and some updates are getting lost in the process.
4.	To fix the bug in the previous code snippet, we need to replace the code “++totalPrimes” with a call to InterlockedIncrement.
C++ code
totalPrimes = 0;

//execute in parallel
totalPrimes = 0;
start = GetTickCount();
parallel_for(1,count,1,[&](int i){
 if (IsPrime(i))
 InterlockedIncrement(&totalPrimes);
});
end = GetTickCount();

5.	From the Debug menu, click Start Debugging to execute the application.
The new output should now still show a parallel speedup of execution, but the number of primes discovered in both the sequential and parallel implementations should be identical.
To separate the work using agents and messaging
In this section of the walkthrough, rather than incrementing a counter for each prime number that we have found, we will store them in an std::vector. Unfortunately vector isn’t thread safe so a slightly different approach is needed. Instead of using a thread safe container here, we’re going to use the agents and messaging APIs to separate the shared state. First we will create a message buffer to send messages to, then create an agent that receives messages and updates the vector. The elapsed time for the parallel implementation should also be smaller than the elapsed time of the sequential version of this algorithm but note that the speedup may not be as noticeable as before and that both the sequential and parallel versions will likely run longer than the original versions.
1.	Here’s how the code looks in serial.
Add the following to the top of ParallelSample.cpp to get support for vector.
#include <vector>

Add the following code to our main function to add the prime numbers to a vector serially.
//Add to a vector serially
std::vector<int> intVec;

start = GetTickCount();
for(int i = 1;i < count;++i){
 if (IsPrime(i))
 intVec.push_back(i);
};
end = GetTickCount();

printf("Found %d prime numbers serially\n",intVec.size());
printf("Elapsed time for serial execution and vector population was: %dms\n",end-start);

2.	Now to parallelize this we’ll need to create an unbounded_buffer and send messages to the buffer from inside the parallel_for loop.
Add the following include to the top of ParallelSample.cpp so that we can use unbounded_buffer:
#include <agents.h>

3.	Now add the following code to our main function which will creates an unbounded buffer and then sends the prime integers to it. Note that we’re using -1 to signal an exit:
//execute with messaging
std::vector<int> v;
unbounded_buffer<int> intBufParallel;

start = GetTickCount();
parallel_for(1,count,1,[&](int i){
 if (IsPrime(i))
 send(intBuf,i);
});
end = GetTickCount();

printf("Found %d prime numbers in parallel\n",v.size());
printf("Elapsed time for parallel execution and vector population was: %dms\n",end-start);

4.	If you run the program at this point now, inaccurate results will be generated. The next step is to create an agent to receive the values and update the vector when a message is received.
Add the following code to ParallelSample.cpp. This will create a class that derives from Concurrency::agent and implements the virtual Run method() when the agent is started. This class has two member variables, an unbounded_buffer and a vector, both of which are initialized in the constructor.
class
ConsumerAgent : public agent{
private:
 std::vector<int>& v_;
 Concurrency::unbounded_buffer<int>& buf_;
public:
 ConsumerAgent(std::vector<int>& v,Concurrency::unbounded_buffer<int>& buf):v_(v),buf_(buf){};
 virtual bool run(){
 int curValue;
 while(true){
 curValue = receive(buf_);
 //use -1 to signal exit
 if (curValue == -1)
 break;
 v_.push_back(curValue);
 };
 return true;
 };
 void wait(){
 agent::wait(this);
 }
};

5.	Now we will modify the code we added in step 3 so to instantiate an instance of our ConsumerAgent and then wait for it to complete:
//execute with messaging
std::vector<int> v;
unbounded_buffer<int> intBuf;

ConsumerAgent myAgent(v,intBuf);
myAgent.start();

start = GetTickCount();
parallel_for(1,count,1,[&](int i){
 if (IsPrime(i))
 send(intBuf,i);
});
//use -1 to signal exit
send(intBuf,-1);
myAgent.wait();
end = GetTickCount();

printf("Found %d prime numbers in parallel\n",v.size());
printf("Elapsed time for parallel execution and vector population was: %dms\n",end-start);

6. The completed ParallelSample.cpp should look like this:
C++ Code
#include "stdafx.h"
#include <windows.h>
#include <math.h>
#include <vector>
#include <ppl.h>
#include <agents.h>

using namespace Concurrency;

bool IsPrime(int value){
 if (value < 2) {
 return false;
 }
 for (int i = 2; i * i <= value; ++i) {
 if (value % i == 0) {
 return false;
 }
 }
 return true;
};

class
ConsumerAgent : public agent{
private:
 std::vector<int>& v_;
 Concurrency::unbounded_buffer<int>& buf_;
public:
 ConsumerAgent(std::vector<int>& v,Concurrency::unbounded_buffer<int>& buf):v_(v),buf_(buf){};
 virtual bool run(){
 int curValue;
 while(true){
 curValue = receive(buf_);
 //use -1 to signal exit
 if (curValue == -1)
 break;
 v_.push_back(curValue);
 };
 return true;
 };
 void wait(){
 agent::wait(this);
 }
};
void main(){
 const int count = 10000000;
 long totalPrimes = 0;
 int start, end;

 //execute serially
 start = GetTickCount();
 for(int i = 1;i < count;++i){
 if (IsPrime(i))
 ++totalPrimes;
 }
 end = GetTickCount();
 printf("Found %d prime numbers \n",totalPrimes);
 printf("Elapsed time for serial execution was: %dms\n",end-start);

 //execute in parallel
 totalPrimes = 0;
 start = GetTickCount();
 parallel_for(1,count,1,[&](int i){
 if (IsPrime(i))
 InterlockedIncrement(&totalPrimes);
 });
 end = GetTickCount();

 printf("Found %d prime numbers in parallel\n",totalPrimes);
 printf("Elapsed time for parallel execution was: %dms\n",end-start);

 //Add to a vector serially
 std::vector<int> intVec;

 start = GetTickCount();
 for(int i = 1;i < count;++i){
 if (IsPrime(i))
 intVec.push_back(i);
 };
 end = GetTickCount();

 printf("Found %d prime numbers serially\n",intVec.size());
 printf("Elapsed time for serial execution and vector population was: %dms\n",end-start);

 //execute with messaging
 std::vector<int> v;
 unbounded_buffer<int> intBuf;

 ConsumerAgent myAgent(v,intBuf);
 myAgent.start();

 start = GetTickCount();
 parallel_for(1,count,1,[&](int i){
 if (IsPrime(i))
 send(intBuf,i);
 });
 //use -1 to signal exit
 send(intBuf,-1);
 myAgent.wait();
 end = GetTickCount();

 printf("Found %d prime numbers in parallel\n",v.size());
 printf("Elapsed time for parallel execution and vector population was: %dms\n",end-start);

}

[bookmark: _Parallel_Profiling_Views][bookmark: _Toc210728696]Parallel Profiling Views in Visual Studio 2010
Understanding the performance characteristics of multi-threaded applications has been a long standing challenge for both traditional Windows and .Net developers. Profiling is an essential tool for developers to maximize application performance. The advent of manycore hardware brings a new level of complexity to profiling and performance engineering. Visual Studio 2010 provides new profiling views to assist developers in deconstructing the performance of their application’s utilization of threads and cores.
In this walkthrough you will learn how to use the new CPU Utilization, Thread Blocking, and Core Execution views to drill into an application’s parallel behaviors. Given a sample trace file, you will open each view and inspect specific, actionable data vital to improving your application.
Load the sample traces file
1.	In Visual Studio 2010 click on the Analyze menu, Profiler, and select New Performance Session. The Performance Explorer pane will open, showing the new performance session titled ‘Performance1’.
2.	Right mouse click on Reports of the Performance1 session in the Performance Explorer pane. Choose Add Report.
3.	Navigate the Add Report – Performance1 window to <c:\ppa >, and shift + click to multi-select the files named MatMult080920.vsp and MatMult2080920.vsp. Click [Open]. MatMult080920.vsp and MatMult2080920.vsp now appear under Performance1 Reports in the Performance Explorer pane.
Launch the Core Utilization/Concurrency View
1.	In the Performance Explorer pane, right mouse click on MatMult2080920.vsp, and select Open. Visual Studio 2010 analyzes the data in the trace file, and displays the Summary View, titled Profiler Performance Report.
2.	In the Current View drop down selection box, click and scroll to select the CPU Utilization View. Visual Studio 2010 analyzes data in the trace file, and displays the Core Utilization/Concurrency View:
[image:]
The Core Utilization/Concurrency View presents a graph that describes the use of core capacity by the profiled application and other processes on the system. This allows you to quickly determine the level of concurrency in your application and how it various over time. The profiled application is drawn as green, while the Idle process is represented as black, the System process as red, and interference from other processes as yellow. In the sample trace, you can see that the application utilizes up to 4 cores over execution time. Also shown are summary statistics for run time, idle time, kernel time, and interference time. You can zoom it, using click and drag with the left mouse button and that allows you to focus in on a region of interest and switch to the detailed views (e.g., Thread Blocking View) in order to understand detailed thread execution during a particular time window. You can also scroll and zoom out (click on the small box in the bottom left corner of the graph).
3.	Zoom in on a section of the timeline by clicking and dragging a selection block.
[image:]
4.	Scroll the timeline to view different portions of the trace timeline at the selected zoom level.
Launch the Thread Blocking View
1.	In the Performance Explorer, right mouse click on the MatMult080920.vsp report item and select Open. Visual Studio 2010 analyzes the trace data and presents the Summary view.
2.	In the Current View drop down selection box, click, scroll, and select Thread Blocking. Visual Studio 2010 analyzes the trace data, and presents a timeline view depicting Disk I/O and all Threads that executed during the duration of the application trace.
[image:]
The Thread Blocking View presents Thread and Disk I/O activity over a timeline. This view shows the user the interaction between threads including, execution duration, blocked duration, and I/O duration. The Execution Breakdown graph at the bottom of the view shows the breakdown of blocking reasons over total trace time. As you can see from the legend, each blocking reason is assigned a color, and Execution time is shown in green.
3.	Hover over colored areas in the timeline to review tooltips that describe the blocking reasons and duration for each thread.
4.	There are two methods for zooming in this view. The first is to use the slider control in the upper right area of the view. The second is to click and drag a selection block within the timeline.
5.	In some scenarios, a developer will want to measure various areas within the timeline rather than performing a zoom. To measure execution time, click the Measurement Only check box, then click and drag within the timeline.
6.	The Thread Blocking View also provides a variety of data reports for the trace file, including Execution Stats, Disk I/O Stats, User Synchronization, and Other Blocking Reasons.
7.	You can correlate thread blocking data for I/O with the files being accessed. For example, in the trace shown, zoom in on the area with pink (I/O) blocking events. Above each I/O blocking event, you can hover over the corresponding disk I/O timeline to see the file(s) being accessed.
[image:]
Launch the Core Execution View
1.	In the Current View drop down selection box, click, scroll, and select Core Execution. Visual Studio 2010 analyzes the trace data, and presents a timeline view depicting each core and each thread that executed on the cores over the duration of the application trace. Each thread is assigned a distinct color.
This view is particularly useful to uncover thread migration between cores, which degrades performance of the application.
[image:]
2.	Zoom in on the 4 second area of the timeline in order to see an example of thread migration between cores. In the sample trace, Thread 6408 is migrated among all 4 cores.
[image:]
3.	To see another example, switch back to the MatMult2080920.vsp file by selecting its tab. In the Current View drop down control, select Core Execution. Visual Studio 2010 analyzes the trace data, and presents the Core Execution view for this file.
[image:]
Hover over each different color on the timeline to examine the thread ids presented in the view. This is a classic case of over subscription. In this trace, 8 threads have been scheduled over the 4 cores. The alternating thread execution results in the view’s checkerboard pattern.
Using the Views together to understand application behavior
You can see in the Core Execution view of MatMult2080920.vsp that the over subscription pattern completes near the 2.5 second area of the trace, and all execution occurs on Core 2. Let’s zoom into that area of the trace to better understand the application’s behavior.
1.	Click and drag a selection block on the timeline to zoom into the 2 second area of the view.
[image:]
Hovering over the unique thread execution areas on the timeline shows that Thread 3744 and Thread 6172 are those occupying the final stages of the trace. These threads can be correlated to specific thread blocking behavior by switching back to the Thread Blocking view.
2.	In the Current View drop down box, select the Thread Blocking view. Visual Studio 2010 analyzes the trace data and presents the Thread Blocking view. Note that the timeline is zoomed to the same depth as the Core Execution view, and timeline position is maintained.
[image:]
Hovering over Thread 6172 shows that the application was blocked on User Synch before its work could be completed.
Summary
In this walkthrough you were introduced to the new Profiler Views: CPU Utilization, Thread Blocking, and Core Execution through the use of a sample trace file. These views present new insight into multi-threaded application performance in manycore scenarios.

[bookmark: _Toc210113832][bookmark: _Toc210728697]
Microsoft Sync Framework
This section contains the following walkthroughs.
· Synchronizing Databases in a Peer-to-Peer Topology Using the Microsoft Sync Framework

[bookmark: _Synchronizing_Databases_in][bookmark: _Toc210728698]Synchronizing Databases in a Peer-to-Peer Topology Using the Microsoft Sync Framework
Introduction
Microsoft Sync Framework is a comprehensive synchronization platform that enables collaboration and offline access for applications, services, and devices. It features technologies and tools that enable roaming, sharing, and taking data offline. By using Sync Framework, developers can build synchronization ecosystems that integrate any application with any data from any store that uses any protocol over any network.
Microsoft Sync Services for ADO.NET is a part of Sync Framework. Modeled after the ADO.NET data access APIs, the Sync Services API provides an intuitive way to synchronize databases. Sync Services makes building applications for offline and collaborative environments a logical extension of building applications for single users who can depend on a consistent network connection. Sync Services lets you synchronize data in client-server and peer-to-peer topologies. In peer-to-peer topologies, each peer can synchronize with any other peer without changes having to go through a central hub. Like offline synchronization, peer-to-peer synchronization can be used when applications do not have a consistent or reliable network connection, but the focus with this part of the API is collaborative applications. For example, in an application that allows users to share project notes, project team members often require a local copy of data that they can work with. When they have made changes, they can synchronize with another team member to exchange changes. For more information about Sync Framework and Sync Services for ADO.NET, see the Sync Framework Developer Center.
This topic describes the key parts of an application that uses Sync Services to synchronize three instances of SQL Server in a peer-to-peer topology. The code in this application focuses on the following Sync Services classes:
· Microsoft.Synchronization.Data.DbSyncAdapter
· Microsoft.Synchronization.Data.DbSyncProvider
· Microsoft.Synchronization.SyncOrchestrator
· Microsoft.Synchronization.SyncOperationStatistics
Configuring synchronization involves the following steps:
1.	Creating tracking tables to store metadata.
2.	Creating stored procedures to update data and metadata.
3.	Initializing each database with schema and change tracking infrastructure.
Executing synchronization involves the following steps:
1.	Creating peer synchronization providers and synchronization adapters.
2.	Creating a synchronization orchestrator, and synchronizing the peers.
The code examples in this topic are from an application that includes three peer databases. The databases are always synchronized as pairs: SyncSamplesDb_Peer1 and SyncSamplesDb_Peer2; SyncSamplesDb_Peer2 and SyncSamplesDb_Peer3; and SyncSamplesDb_Peer1 and SyncSamplesDb_Peer3. For a production application, a copy of the application would typically be deployed to each peer so that synchronization could be initiated from any of the peers.
Note The Complete Code Example section at the end of this topic includes information about requirements to run the sample application code, and a SQL script to provision the three peer databases.
Creating Tracking Tables to Store Metadata
Peer-to-peer synchronization requires a way to identify which rows should be synchronized during a particular synchronization session. Each table must have a primary key. Consider the following code example. It shows the Sales.Customer table schema in the SyncSamplesDb_Peer1 database.
CREATE TABLE Sales.Customer(
 CustomerId uniqueidentifier NOT NULL PRIMARY KEY DEFAULT NEWID(),
 CustomerName nvarchar(100) NOT NULL,
 SalesPerson nvarchar(100) NOT NULL,
 CustomerType nvarchar(100) NOT NULL)

Each table that you synchronize has an associated Microsoft.Synchronization.Data.DbSyncAdapter object. This is described in the section "Creating Peer Synchronization Providers and Synchronization Adapters" later in this topic. Add the CustomerId primary key to the Microsoft.Synchronization.Data.DbSyncAdapter.RowIdColumns collection of the Microsoft.Synchronization.Data.DbSyncAdapter object as follows: adapterCustomer.RowIdColumns.Add("CustomerId"). To view this code in context, see the complete code example at the end of this topic.
In addition to a primary key, Sync Services synchronization requires a way to track which rows have changed since the previous synchronization session between two peers. There are two main activities involved in tracking changes:
· Tracking inserts, updates, and deletes for each table that is synchronized.
This can be handled by using coupled or decoupled change tracking. Coupled change tracking means that change-tracking metadata for inserts and updates is stored in the base table, with a tombstone table to track deletes. Decoupled change tracking means that metadata for inserts, updates, and deletes is stored in a separate table (typically one table for each base table). Set the kind of change tracking by specifying a value for the Microsoft.Synchronization.Data.DbSyncProvider.ChangeTracking property. With either kind of change tracking, the commands that you specify for the Microsoft.Synchronization.Data.DbSyncAdapter object use change tracking metadata to determine the incremental changes that have been made at each peer.
Note The examples in this documentation use decoupled change tracking. You can use different kinds of change tracking for different peer providers. However, you must use the same kind of change tracking for all tables that are synchronized by a particular peer provider. In addition to the tracking approaches described in this topic, you can use SQL Server change tracking with peer-to-peer synchronization. However, Sync Services requires the ability to update change tracking metadata for peer-to-peer synchronization, and SQL Server change tracking tables are read-only. To use SQL Server change tracking requires that you maintain a separate metadata table that Sync Services can update.
· Tracking which changes each peer has received from other peers.
This is typically handled by a single table in each peer database. This table stores synchronization knowledge in a binary format for each scope. Sync Services uses knowledge to determine which changes to send to each peer during synchronization. Applications do not have to work with knowledge directly. A scope can be thought of as a logical grouping of tables. Consider a bidirectional synchronization topology with three peers:
a.	Peer1 and Peer2 synchronize all changes.
b.	Peer1 synchronizes with Peer3.
c.	A user performs an update at Peer2.
d.	Peer3 synchronizes with Peer2.
When Peer3 synchronizes with Peer2, Peer3 already has most of the changes from Peer2, because Peer3 synchronized with Peer1 first. Knowledge enables Sync Services to recognize this, and to synchronize only the update that occurred at Peer2.
The following code example creates a table that tracks changes for the Sales.Customer table.
CREATE TABLE Sales.Customer_Tracking(
 CustomerId uniqueidentifier NOT NULL PRIMARY KEY,
 sync_row_is_tombstone int DEFAULT 0,
 sync_row_timestamp timestamp,
 sync_update_peer_key int DEFAULT 0,
 sync_update_peer_timestamp bigint,
 sync_create_peer_key int DEFAULT 0,
 sync_create_peer_timestamp bigint,
 last_change_datetime datetime DEFAULT GETDATE())

The base table and tracking tables must be present at each peer. The primary key of the tracking table is the same as in the base table, and additional columns are required. These additional columns are described in the following table. The names of the additional columns do not have to be the same as those listed; they must match the queries or procedures that access the tracking tables.
	Additional column
	Usage

	sync_row_is_tombstone
	A value of 1 indicates that a metadata entry is for a delete in the base table.

	sync_row_timestamp
	The logical time at which a metadata entry was inserted.

	sync_update_peer_key
	The identity of the peer that performed an update. A value of 0 indicates that it was updated at the local peer.

	sync_update_peer_timestamp
	The logical time at which an update was made.

	sync_create_peer_key
	The identity of the peer that performed an insert. A value of 0 indicates that it was inserted at the local peer.

	sync_create_peer_timestamp
	The logical time at which an insert was made.

	last_change_datetime
	The last time that a metadata entry was updated.

The following code example creates a trigger that updates change tracking metadata in the Sales.Customer_Tracking table when an update is made to the Sales.Customer table.
CREATE TRIGGER Customer_InsertTrigger ON Sales.Customer FOR INSERT
AS
 INSERT INTO Sales.Customer_Tracking(CustomerId,
 sync_update_peer_key, sync_update_peer_timestamp,
 sync_create_peer_key, sync_create_peer_timestamp)
 SELECT CustomerId, 0, @@DBTS + 1, 0, @@DBTS + 1
 FROM inserted

The following code example creates a Sales.ScopeInfo table and inserts a scope called Sales. The Sales.ScopeInfo table stores synchronization knowledge for each scope that is defined. The scope does not necessarily correspond to the database schema Sales.
CREATE TABLE Sales.ScopeInfo(
 scope_id uniqueidentifier DEFAULT NEWID(),
 scope_name nvarchar(100) NULL,
 scope_sync_knowledge varbinary(max) NULL,
 scope_tombstone_cleanup_knowledge varbinary(max) NULL,
 scope_timestamp timestamp)

SET NOCOUNT ON
INSERT INTO Sales.ScopeInfo(scope_name) VALUES ('Sales')
SET NOCOUNT OFF
Creating Stored Procedures to Update Data and Metadata
After you create metadata tables for each peer, create Transact SQL queries or stored procedures (recommended) to apply changes to the base tables and metadata tables at each peer. These queries or procedures are specified for the following Microsoft.Synchronization.Data.DbSyncAdapter properties. These are described in the section "Creating Peer Synchronization Providers and Synchronization Adapters."
· Microsoft.Synchronization.Data.DbSyncAdapter.SelectIncrementalChangesCommand
· Microsoft.Synchronization.Data.DbSyncAdapter.InsertCommand
· Microsoft.Synchronization.Data.DbSyncAdapter.UpdateCommand
· Microsoft.Synchronization.Data.DbSyncAdapter.DeleteCommand
· Microsoft.Synchronization.Data.DbSyncAdapter.InsertMetadataCommand
· Microsoft.Synchronization.Data.DbSyncAdapter.UpdateMetadataCommand
· Microsoft.Synchronization.Data.DbSyncAdapter.DeleteMetadataCommand
· Microsoft.Synchronization.Data.DbSyncAdapter.SelectRowCommand
· Microsoft.Synchronization.Data.DbSyncAdapter.SelectMetadataForCleanupCommand
The following code examples create a set of stored procedures to handle data and metadata changes for the Sales.Customer table. For brevity, the procedures to select data and to handle updates are included, but those for inserts and deletes are not. In the complete code example at the end of this topic, many of the values that are passed to these procedures come from session variables. These are built-in variables that enable Sync Services to pass values to commands during a synchronization session.
Procedure for SelectIncrementalChangesCommand
CREATE PROCEDURE Sales.sp_Customer_SelectChanges (
 @sync_min_timestamp bigint,
 @sync_metadata_only int,
 @sync_initialize int)
AS

 --IF @sync_initialize = 0
 --BEGIN
 -- Perform additional logic if required.
 --END

 SELECT t.CustomerId,
 c.CustomerName,
 c.SalesPerson,
 c.CustomerType,
 t.sync_row_is_tombstone,
 t.sync_row_timestamp,
 t.sync_update_peer_key,
 t.sync_update_peer_timestamp,
 t.sync_create_peer_key,
 t.sync_create_peer_timestamp
 FROM Customer c RIGHT JOIN Customer_Tracking t ON c.CustomerId = t.CustomerId
 WHERE t.sync_row_timestamp > @sync_min_timestamp
 ORDER BY t.CustomerId ASC
Procedure for UpdateCommand
CREATE PROCEDURE Sales.sp_Customer_ApplyUpdate (
 @CustomerId uniqueidentifier,
 @CustomerName nvarchar(100),
 @SalesPerson nvarchar(100),
 @CustomerType nvarchar(100),
 @sync_min_timestamp bigint ,
 @sync_row_count int OUT,
 @sync_force_write int)
AS
 UPDATE c
 SET c.CustomerName = @CustomerName, c.SalesPerson = @SalesPerson, c.CustomerType = @CustomerType
 FROM Customer c JOIN Customer_Tracking t ON c.CustomerId = t.CustomerId
 WHERE ((t.sync_row_timestamp <= @sync_min_timestamp) OR @sync_force_write = 1)
 AND t.CustomerId = @CustomerId
 SET @sync_row_count = @@rowcount
Procedure for UpdateMetadataCommand
REATE PROCEDURE Sales.sp_Customer_UpdateMetadata (
 @CustomerId uniqueidentifier,
 @sync_create_peer_key int,
 @sync_create_peer_timestamp bigint,
 @sync_update_peer_key int,
 @sync_update_peer_timestamp timestamp,
 @sync_row_timestamp timestamp,
 @sync_check_concurrency int,
 @sync_row_count int OUT)
AS
 UPDATE Customer_Tracking SET
 sync_create_peer_key = @sync_create_peer_key,
 sync_create_peer_timestamp = @sync_create_peer_timestamp,
 sync_update_peer_key = @sync_update_peer_key,
 sync_update_peer_timestamp = @sync_update_peer_timestamp
 WHERE CustomerId = @CustomerId AND
 (@sync_check_concurrency = 0 OR sync_row_timestamp = @sync_row_timestamp)
 SET @sync_row_count = @@rowcount
Procedure for SelectRowCommand
CREATE PROCEDURE Sales.sp_Customer_SelectRow
 @CustomerId uniqueidentifier
AS
 SELECT t.CustomerId,
 c.CustomerName,
 c.SalesPerson,
 c.CustomerType,
 t.sync_row_timestamp,
 t.sync_row_is_tombstone,
 t.sync_update_peer_key,
 t.sync_update_peer_timestamp,
 t.sync_create_peer_key,
 t.sync_create_peer_timestamp
 FROM Customer c RIGHT JOIN Customer_Tracking t ON c.CustomerId = t.CustomerId
 WHERE t.CustomerId = @CustomerId
Procedure for SelectMetadataForCleanupCommand
CREATE PROCEDURE Sales.sp_Customer_SelectMetadata
 @metadata_aging_in_hours int
AS
 IF @metadata_aging_in_hours = -1
 BEGIN
 SELECT CustomerId,
 sync_row_timestamp,
 sync_update_peer_key,
 sync_update_peer_timestamp,
 sync_create_peer_key,
 sync_create_peer_timestamp
 FROM Customer_Tracking
 WHERE sync_row_is_tombstone = 1
 END

 ELSE
 BEGIN
 SELECT CustomerId,
 sync_row_timestamp,
 sync_update_peer_key,
 sync_update_peer_timestamp,
 sync_create_peer_key,
 sync_create_peer_timestamp
 FROM Customer_Tracking
 WHERE sync_row_is_tombstone = 1 AND
 DATEDIFF(hh, last_change_datetime, GETDATE()) > @metadata_aging_in_hours
 END
Initializing Each Database with Schema and Change Tracking Infrastructure
Initializing a peer database involves copying to each peer the table schema and change tracking infrastructure, and any initial data that is required. For peer-to-peer synchronization, Sync Services does not automatically create table schema or tracking infrastructure in the peer databases. An application must ensure that these objects exist before it tries to synchronize peers. You can use backup and restore or another technology to copy the objects to each peer, but you should do so only if changes are not occurring in the database from which the backup is taken. If the first peer database is in use and being updated, we strongly recommend that you copy only schema and change tracking infrastructure to each peer, and use Sync Services to copy the data. If you copy the data by using another method, a peer might miss changes that have been committed at the first peer. Sync Services can initialize the data at each peer as long as at least one peer has the data. The example code in this topic uses this approach: each peer database contains two tables, but only the tables in SyncSamplesDb_Peer1 contain data. The data is copied to the other peers during the first synchronization session.
Creating Peer Synchronization Providers and Synchronization Adapters
Now that the change tracking infrastructure is in place, you can focus on the code that configures synchronization. The bulk of the synchronization configuration code involves two kinds of objects: a DbSyncAdapter object for each table, and a DbSyncProvider object for each peer that will synchronize during a session.
Synchronization Adapter Commands
The following commands must be set on the DbSyncAdapter object for each table.
	Synchronization adapter property
	Usage

	SelectIncrementalChangesCommand
	Select all changes since the previous synchronization by joining the base table and its change tracking table. This is the maximum set of changes that could be synchronized with a peer. As described earlier, this set of changes might be additionally constrained when knowledge is accounted for.

	InsertCommand, UpdateCommand, and DeleteCommand
	Apply to a peer the inserts, updates, and deletes that were selected from the other peer. These changes were selected by using the query or procedure that you specified for the SelectIncrementalChangesCommand property.

	InsertMetadataCommand, UpdateMetadataCommand, and DeleteMetadataCommand
	Update the change tracking tables at each peer to reflect the changes that were selected from one peer and applied to the other peer. These updates enable Sync Services to track where and when changes occurred.

	SelectRowCommand
	Select metadata about rows that are in conflict during synchronization.

	SelectMetadataForCleanupCommand
	Select metadata that can be cleaned up at a peer. Cleanup is typically retention-based: metadata is kept for a specific time. However, an application can use other logic to determine when to clean up metadata.

The following code examples create commands that call the stored procedures that are described earlier in this topic.
Application Code for SelectIncrementalChangesCommand
Visual C#
SqlCommand chgsCustomerCmd = new SqlCommand();
chgsCustomerCmd.CommandType = CommandType.StoredProcedure;
chgsCustomerCmd.CommandText = "Sales.sp_Customer_SelectChanges";
chgsCustomerCmd.Parameters.Add("@" + DbSyncSession.SyncMetadataOnly, SqlDbType.Int);
chgsCustomerCmd.Parameters.Add("@" + DbSyncSession.SyncMinTimestamp, SqlDbType.BigInt);
chgsCustomerCmd.Parameters.Add("@" + DbSyncSession.SyncInitialize, SqlDbType.Int);

adapterCustomer.SelectIncrementalChangesCommand = chgsCustomerCmd;

Visual Basic
Dim chgsCustomerCmd As New SqlCommand()

With chgsCustomerCmd
 .CommandType = CommandType.StoredProcedure
 .CommandText = "Sales.sp_Customer_SelectChanges"
 .Parameters.Add("@" + DbSyncSession.SyncMetadataOnly, SqlDbType.Int)
 .Parameters.Add("@" + DbSyncSession.SyncMinTimestamp, SqlDbType.BigInt)
 .Parameters.Add("@" + DbSyncSession.SyncInitialize, SqlDbType.Int)
End With

adapterCustomer.SelectIncrementalChangesCommand = chgsCustomerCmd
Application Code for UpdateCommand
Visual C#
SqlCommand updCustomerCmd = new SqlCommand();
updCustomerCmd.CommandType = CommandType.StoredProcedure;
updCustomerCmd.CommandText = "Sales.sp_Customer_ApplyUpdate";
updCustomerCmd.Parameters.Add("@CustomerId", SqlDbType.UniqueIdentifier);
updCustomerCmd.Parameters.Add("@CustomerName", SqlDbType.NVarChar);
updCustomerCmd.Parameters.Add("@SalesPerson", SqlDbType.NVarChar);
updCustomerCmd.Parameters.Add("@CustomerType", SqlDbType.NVarChar);
updCustomerCmd.Parameters.Add("@" + DbSyncSession.SyncMinTimestamp, SqlDbType.BigInt);
updCustomerCmd.Parameters.Add("@" + DbSyncSession.SyncRowCount, SqlDbType.Int).Direction = ParameterDirection.Output;
updCustomerCmd.Parameters.Add("@" + DbSyncSession.SyncForceWrite, SqlDbType.Int);

adapterCustomer.UpdateCommand = updCustomerCmd;

Visual Basic
With updCustomerCmd
 .CommandType = CommandType.StoredProcedure
 .CommandText = "Sales.sp_Customer_ApplyUpdate"
 .Parameters.Add("@CustomerId", SqlDbType.UniqueIdentifier)
 .Parameters.Add("@CustomerName", SqlDbType.NVarChar)
 .Parameters.Add("@SalesPerson", SqlDbType.NVarChar)
 .Parameters.Add("@CustomerType", SqlDbType.NVarChar)
 .Parameters.Add("@" + DbSyncSession.SyncMinTimestamp, SqlDbType.BigInt)
 .Parameters.Add("@" + DbSyncSession.SyncRowCount, SqlDbType.Int).Direction = ParameterDirection.Output
 .Parameters.Add("@" + DbSyncSession.SyncForceWrite, SqlDbType.Int)
End With

adapterCustomer.UpdateCommand = updCustomerCmd

Application Code for UpdateMetadataCommand
Visual C#
SqlCommand updMetadataCustomerCmd = new SqlCommand();
updMetadataCustomerCmd.CommandType = CommandType.StoredProcedure;
updMetadataCustomerCmd.CommandText = "Sales.sp_Customer_UpdateMetadata";
updMetadataCustomerCmd.Parameters.Add("@CustomerId", SqlDbType.UniqueIdentifier);
updMetadataCustomerCmd.Parameters.Add("@" + DbSyncSession.SyncCreatePeerKey, SqlDbType.Int);
updMetadataCustomerCmd.Parameters.Add("@" + DbSyncSession.SyncCreatePeerTimestamp, SqlDbType.BigInt);
updMetadataCustomerCmd.Parameters.Add("@" + DbSyncSession.SyncUpdatePeerKey, SqlDbType.Int);
updMetadataCustomerCmd.Parameters.Add("@" + DbSyncSession.SyncUpdatePeerTimestamp, SqlDbType.BigInt);
updMetadataCustomerCmd.Parameters.Add("@" + DbSyncSession.SyncCheckConcurrency, SqlDbType.Int);
updMetadataCustomerCmd.Parameters.Add("@" + DbSyncSession.SyncRowTimestamp, SqlDbType.BigInt);
updMetadataCustomerCmd.Parameters.Add("@" + DbSyncSession.SyncRowCount, SqlDbType.Int).Direction = ParameterDirection.Output;

adapterCustomer.UpdateMetadataCommand = updMetadataCustomerCmd;

Visual Basic
Dim updMetadataCustomerCmd As New SqlCommand()

With updMetadataCustomerCmd
 .CommandType = CommandType.StoredProcedure
 .CommandText = "Sales.sp_Customer_UpdateMetadata"
 .Parameters.Add("@CustomerId", SqlDbType.UniqueIdentifier)
 .Parameters.Add("@" + DbSyncSession.SyncCreatePeerKey, SqlDbType.Int)
 .Parameters.Add("@" + DbSyncSession.SyncCreatePeerTimestamp, SqlDbType.BigInt)
 .Parameters.Add("@" + DbSyncSession.SyncUpdatePeerKey, SqlDbType.Int)
 .Parameters.Add("@" + DbSyncSession.SyncUpdatePeerTimestamp, SqlDbType.BigInt)
 .Parameters.Add("@" + DbSyncSession.SyncCheckConcurrency, SqlDbType.Int)
 .Parameters.Add("@" + DbSyncSession.SyncRowTimestamp, SqlDbType.BigInt)
 .Parameters.Add("@" + DbSyncSession.SyncRowCount, SqlDbType.Int).Direction = ParameterDirection.Output
End With

adapterCustomer.UpdateMetadataCommand = updMetadataCustomerCmd
Application Code for SelectRowCommand
Visual C#
SqlCommand selRowCustomerCmd = new SqlCommand();
selRowCustomerCmd.CommandType = CommandType.StoredProcedure;
selRowCustomerCmd.CommandText = "Sales.sp_Customer_SelectRow";
selRowCustomerCmd.Parameters.Add("@CustomerId", SqlDbType.UniqueIdentifier);

adapterCustomer.SelectRowCommand = selRowCustomerCmd;

Visual Basic
Dim selRowCustomerCmd As New SqlCommand()

With selRowCustomerCmd
 .CommandType = CommandType.StoredProcedure
 .CommandText = "Sales.sp_Customer_SelectRow"
 .Parameters.Add("@CustomerId", SqlDbType.UniqueIdentifier)
End With

adapterCustomer.SelectRowCommand = selRowCustomerCmd
Application Code for SelectMetadataForCleanupCommand
Visual C#
SqlCommand selMetadataCustomerCmd = new SqlCommand();
selMetadataCustomerCmd.CommandType = CommandType.StoredProcedure;
selMetadataCustomerCmd.CommandText = "Sales.sp_Customer_SelectMetadata";
selMetadataCustomerCmd.Parameters.Add("@metadata_aging_in_hours", SqlDbType.Int).Value = MetadataAgingInHours;

adapterCustomer.SelectMetadataForCleanupCommand = selMetadataCustomerCmd;

Visual Basic
Dim selMetadataCustomerCmd As New SqlCommand()

With selMetadataCustomerCmd
 .CommandType = CommandType.StoredProcedure
 .CommandText = "Sales.sp_Customer_SelectMetadata"
 .Parameters.Add("@metadata_aging_in_hours", SqlDbType.Int).Value = MetadataAgingInHours
End With

adapterCustomer.SelectMetadataForCleanupCommand = selMetadataCustomerCmd
Synchronization Provider Commands
The following commands must be set on the DbSyncProvider object for each peer.
	Synchronization provider property
	Usage

	Microsoft.Synchronization.Data.DbSyncProvider.SelectNewTimestampCommand
	Returns a timestamp value that is used to select and apply sets of changes to each peer. During the current synchronization session, the command provides a new timestamp value. Changes that are made after the timestamp value from the previous synchronization session and before the new timestamp value are synchronized. The new value is then stored and used as the starting point for the next session. The following code specifies the query that selects a new timestamp.

	Microsoft.Synchronization.Data.DbSyncProvider.SelectScopeInfoCommand
	Returns information from the scope metadata table, such as the synchronization knowledge and cleanup knowledge that Sync Services requires.

	Microsoft.Synchronization.Data.DbSyncProvider.UpdateScopeInfoCommand
	Updates information in the scope metadata table.

The following code example creates a command for the SelectNewTimestampCommand property. The commands for the SelectScopeInfoCommand and UpdateScopeInfoCommand properties are included in the complete code example at the end of this topic.
Application Code for SelectNewTimestampCommand
Visual C#
SqlCommand selectNewTimestampCommand = new SqlCommand();
string newTimestampVariable = "@" + DbSyncSession.SyncNewTimestamp;
selectNewTimestampCommand.CommandText = "SELECT " + newTimestampVariable + " = min_active_rowversion() - 1";
selectNewTimestampCommand.Parameters.Add(newTimestampVariable, SqlDbType.Timestamp);
selectNewTimestampCommand.Parameters[newTimestampVariable].Direction = ParameterDirection.Output;

peerProvider.SelectNewTimestampCommand = selectNewTimestampCommand;

Visual Basic
Dim newTimestampVariable As String = "@" + DbSyncSession.SyncNewTimestamp

Dim selectNewTimestampCommand As New SqlCommand()

With selectNewTimestampCommand
 .CommandText = "SELECT " + newTimestampVariable + " = min_active_rowversion() - 1"
 .Parameters.Add(newTimestampVariable, SqlDbType.Timestamp)
 .Parameters(newTimestampVariable).Direction = ParameterDirection.Output
End With

peerProvider.SelectNewTimestampCommand = selectNewTimestampCommand
Creating a Synchronization Orchestrator and Synchronizing the Peers
The code described in the previous section of this topic configured synchronization for each peer. Now it is time to synchronize peers. The following code example instantiates two DbSyncProvider objects and calls a SetupSyncProvider method that was created for the sample application. This method shows a way to configure a peer provider and synchronization adapter. The code then specifies which provider is the local provider and which is the remote provider. Finally, the code specifies that changes are first uploaded from the remote database to the local database and then downloaded in the other direction.
Visual C#
public class SampleSyncAgent : SyncOrchestrator
{
 public SampleSyncAgent(string localProviderConnString, string remoteProviderConnString)
 {

 //Instantiate the sample provider that allows us to create a provider
 //for both of the peers that are being synchronized.
 SampleSyncProvider sampleSyncProvider = new SampleSyncProvider();

 //Instantiate a DbSyncProvider for the local peer and the remote peer.
 //For example, if this code is running at peer1 and is
 //synchronizing with peer2, peer1 would be the local provider
 //and peer2 the remote provider.
 DbSyncProvider localProvider = new DbSyncProvider();
 DbSyncProvider remoteProvider = new DbSyncProvider();

 //Create a provider by using the SetupSyncProvider on the sample class.
 sampleSyncProvider.SetupSyncProvider(localProviderConnString, localProvider);
 localProvider.SyncProviderPosition = SyncProviderPosition.Local;

 sampleSyncProvider.SetupSyncProvider(remoteProviderConnString, remoteProvider);
 remoteProvider.SyncProviderPosition = SyncProviderPosition.Remote;

 //Specify the local and remote providers that should be synchronized,
 //and the direction and order of changes. In this case, changes are first
 //uploaded from remote to local and then downloaded in the other direction.
 this.LocalProvider = localProvider;
 this.RemoteProvider = remoteProvider;
 this.Direction = SyncDirectionOrder.UploadAndDownload;
 }
}

Visual Basic
Public Class SampleSyncAgent
 Inherits SyncOrchestrator

 Public Sub New(ByVal localProviderConnString As String, ByVal remoteProviderConnString As String)

 'Instantiate the sample provider that allows us to create a provider
 'for both of the peers that are being synchronized.
 Dim sampleSyncProvider As New SampleSyncProvider()

 'Instantiate a DbSyncProvider for the local peer and the remote peer.
 'For example, if this code is running at peer1 and is
 'synchronizing with peer2, peer1 would be the local provider
 'and peer2 the remote provider.
 Dim localProvider As New DbSyncProvider()
 Dim remoteProvider As New DbSyncProvider()

 'Create a provider by using the SetupSyncProvider on the sample class.
 sampleSyncProvider.SetupSyncProvider(localProviderConnString, localProvider)
 localProvider.SyncProviderPosition = SyncProviderPosition.Local

 sampleSyncProvider.SetupSyncProvider(remoteProviderConnString, remoteProvider)
 remoteProvider.SyncProviderPosition = SyncProviderPosition.Remote

 'Specify the local and remote providers that should be synchronized,
 'and the direction and order of changes. In this case, changes are first
 'uploaded from local to remote and then downloaded in the other direction.
 Me.LocalProvider = localProvider
 Me.RemoteProvider = remoteProvider
 Me.Direction = SyncDirectionOrder.UploadAndDownload

 End Sub 'New
End Class 'SampleSyncAgent

The following code sets up three synchronization sessions by instantiating the SampleSyncAgent class (which derives from SyncOrchestrator) and then calling the Synchronize method to synchronize the three pairs of peer databases.
Visual C#
//The SampleStats class handles information from the SyncStatistics
//object that the Synchronize method returns.
SampleStats sampleStats = new SampleStats();

try
{
 //Initial synchronization. Instantiate the SyncOrchestrator
 //and call Synchronize. Note that data is not synchronized during the
 //session between peer 1 and peer 3, because all rows have already
 //been delivered to peer 3 during its synchronization session with peer 2.
 SyncOrchestrator sampleSyncAgent;
 SyncOperationStatistics syncStatistics;

 sampleSyncAgent = new SampleSyncAgent(util.Peer1ConnString, util.Peer2ConnString);
 syncStatistics = sampleSyncAgent.Synchronize();
 sampleStats.DisplayStats(syncStatistics, "initial");

 sampleSyncAgent = new SampleSyncAgent(util.Peer2ConnString, util.Peer3ConnString);
 syncStatistics = sampleSyncAgent.Synchronize();
 sampleStats.DisplayStats(syncStatistics, "initial");

 sampleSyncAgent = new SampleSyncAgent(util.Peer1ConnString, util.Peer3ConnString);
 syncStatistics = sampleSyncAgent.Synchronize();
 sampleStats.DisplayStats(syncStatistics, "initial");
}

catch (DbOutdatedSyncException ex)
{
 Console.WriteLine("Outdated Knowledge: " + ex.OutdatedPeerSyncKnowledge.ToString() +
 " Clean up knowledge: " + ex.MissingCleanupKnowledge.ToString());
}
catch (Exception ex)
{
 Console.WriteLine(ex.Message);
}

Visual Basic
 'The SampleStats class handles information from the SyncStatistics
 'object that the Synchronize method returns.
 Dim sampleStats As New SampleStats()

 Try
 'Initial synchronization. Instantiate the SyncOrchestrator
 'and call Synchronize. Note that data is not synchronized during the
 'session between peer 1 and peer 3, because all rows have already
 'been delivered to peer 3 during its synchronization session with peer 2.
 Dim sampleSyncAgent As SyncOrchestrator
 Dim syncStatistics As SyncOperationStatistics

 sampleSyncAgent = New SampleSyncAgent(util.Peer1ConnString, util.Peer2ConnString)
 syncStatistics = sampleSyncAgent.Synchronize()
 sampleStats.DisplayStats(syncStatistics, "initial")

 sampleSyncAgent = New SampleSyncAgent(util.Peer2ConnString, util.Peer3ConnString)
 syncStatistics = sampleSyncAgent.Synchronize()
 sampleStats.DisplayStats(syncStatistics, "initial")

 sampleSyncAgent = New SampleSyncAgent(util.Peer1ConnString, util.Peer3ConnString)
 syncStatistics = sampleSyncAgent.Synchronize()
 sampleStats.DisplayStats(syncStatistics, "initial")

 Catch ex As DbOutdatedSyncException
 Console.WriteLine("Outdated Knowledge: " & ex.OutdatedPeerSyncKnowledge.ToString() _
 & " Clean up knowledge: " + ex.MissingCleanupKnowledge.ToString())
 Catch ex As Exception
 Console.WriteLine(ex.Message)
 End Try
[bookmark: _Complete_Code_Example]Complete Code Example
The following complete code example includes the code examples that are described earlier, the code that is required for the DbSyncAdapter and DbSyncProvider objects, and additional code to display synchronization statistics. To run this code, follow these steps:
1.	Execute the SQL script that is included in the Peer Database Configuration Script section at the end of this topic. Execute the script against the SQL Server Express database VS2010CTP\SQLEXPRESS.
2.	Create a Visual C# or Visual Basic Console Application project in Visual Studio, and add references to the following DLLs by browsing to the specified directories:
· Microsoft.Synchronization in Program Files\Microsoft Sync Framework\v1.0\Runtime\x86
· Microsoft.Synchronization.Data in Program Files\Microsoft Sync Framework\v1.0\Runtime\ADO.NET\V2.0\x86
3.	Copy code into the project, and build and run the application.
Visual C#
using System;
using System.IO;
using System.Text;
using System.Data;
using System.Data.SqlClient;
using Microsoft.Synchronization;
using Microsoft.Synchronization.Data;

namespace Microsoft.Samples.Synchronization
{
 class Program
 {
 static void Main(string[] args)
 {

 //The Utility class handles all functionality that is not
 //directly related to synchronization, such as holding peerConnection
 //string information and making changes to the server database.
 Utility util = new Utility();

 //The SampleStats class handles information from the SyncStatistics
 //object that the Synchronize method returns.
 SampleStats sampleStats = new SampleStats();

 try
 {
 //Initial synchronization. Instantiate the SyncOrchestrator
 //and call Synchronize. Note that data is not synchronized during the
 //session between peer 1 and peer 3, because all rows have already
 //been delivered to peer 3 during its synchronization session with peer 2.
 SyncOrchestrator sampleSyncAgent;
 SyncOperationStatistics syncStatistics;

 sampleSyncAgent = new SampleSyncAgent(util.Peer1ConnString, util.Peer2ConnString);
 syncStatistics = sampleSyncAgent.Synchronize();
 sampleStats.DisplayStats(syncStatistics, "initial");

 sampleSyncAgent = new SampleSyncAgent(util.Peer2ConnString, util.Peer3ConnString);
 syncStatistics = sampleSyncAgent.Synchronize();
 sampleStats.DisplayStats(syncStatistics, "initial");

 sampleSyncAgent = new SampleSyncAgent(util.Peer1ConnString, util.Peer3ConnString);
 syncStatistics = sampleSyncAgent.Synchronize();
 sampleStats.DisplayStats(syncStatistics, "initial");
 }

 catch (DbOutdatedSyncException ex)
 {
 Console.WriteLine("Outdated Knowledge: " + ex.OutdatedPeerSyncKnowledge.ToString() +
 " Clean up knowledge: " + ex.MissingCleanupKnowledge.ToString());
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 }

 //Make changes in each peer database.
 util.MakeDataChangesOnPeer(util.Peer1ConnString, "Customer");
 util.MakeDataChangesOnPeer(util.Peer2ConnString, "Customer");
 util.MakeDataChangesOnPeer(util.Peer3ConnString, "Customer");

 try
 {
 //Subsequent synchronization. Changes are now synchronized between all
 //peers.
 SyncOrchestrator sampleSyncAgent;
 SyncOperationStatistics syncStatistics;

 sampleSyncAgent = new SampleSyncAgent(util.Peer1ConnString, util.Peer2ConnString);
 syncStatistics = sampleSyncAgent.Synchronize();
 sampleStats.DisplayStats(syncStatistics, "subsequent");

 sampleSyncAgent = new SampleSyncAgent(util.Peer2ConnString, util.Peer3ConnString);
 syncStatistics = sampleSyncAgent.Synchronize();
 sampleStats.DisplayStats(syncStatistics, "subsequent");

 sampleSyncAgent = new SampleSyncAgent(util.Peer1ConnString, util.Peer3ConnString);
 syncStatistics = sampleSyncAgent.Synchronize();
 sampleStats.DisplayStats(syncStatistics, "subsequent");
 }

 catch (DbOutdatedSyncException ex)
 {
 Console.WriteLine("Outdated Knowledge: " + ex.OutdatedPeerSyncKnowledge.ToString() +
 " Clean up knowledge: " + ex.MissingCleanupKnowledge.ToString());
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 }

 //Return peer data back to its original state.
 util.CleanUpPeer(util.Peer1ConnString);
 util.CleanUpPeer(util.Peer2ConnString);
 util.CleanUpPeer(util.Peer3ConnString);

 //Exit.
 Console.Write("\nPress Enter to close the window.");
 Console.ReadLine();
 }

 //Create a class that is derived from
 //Microsoft.Synchronization.SyncOrchestrator.

 public class SampleSyncAgent : SyncOrchestrator
 {
 public SampleSyncAgent(string localProviderConnString, string remoteProviderConnString)
 {

 //Instantiate the sample provider that allows us to create a provider
 //for both of the peers that are being synchronized.
 SampleSyncProvider sampleSyncProvider = new SampleSyncProvider();

 //Instantiate a DbSyncProvider for the local peer and the remote peer.
 //For example, if this code is running at peer1 and is
 //synchronizing with peer2, peer1 would be the local provider
 //and peer2 the remote provider.

 DbSyncProvider localProvider = new DbSyncProvider();
 DbSyncProvider remoteProvider = new DbSyncProvider();

 //Create a provider by using the SetupSyncProvider on the sample class.
 sampleSyncProvider.SetupSyncProvider(localProviderConnString, localProvider);
 localProvider.SyncProviderPosition = SyncProviderPosition.Local;

 sampleSyncProvider.SetupSyncProvider(remoteProviderConnString, remoteProvider);
 remoteProvider.SyncProviderPosition = SyncProviderPosition.Remote;

 //Specify the local and remote providers that should be synchronized,
 //and the direction and order of changes. In this case, changes are first
 //uploaded from remote to local and then downloaded in the other direction.
 this.LocalProvider = localProvider;
 this.RemoteProvider = remoteProvider;
 this.Direction = SyncDirectionOrder.UploadAndDownload;
 }
 }

 public class SampleSyncProvider
 {

 public DbSyncProvider SetupSyncProvider(string peerConnString, DbSyncProvider peerProvider)
 {

 //Set the amount of time to retain metadata.
 const int MetadataAgingInHours = 100;

 SqlConnection peerConnection = new SqlConnection(peerConnString);
 peerProvider.Connection = peerConnection;
 peerProvider.ScopeName = "Sales";

 //Create a DbSyncAdapter object for the Customer table and associate it
 //with the DbSyncProvider. Following the DataAdapter style in ADO.NET,
 //DbSyncAdapter is the equivalent for synchronization. The commands that
 //are specified for the DbSyncAdapter object call stored procedures
 //that are created in each peer database.

 DbSyncAdapter adapterCustomer = new DbSyncAdapter("Customer");

 //Specify the primary key, which Sync Services uses
 //to identify each row during synchronization.
 adapterCustomer.RowIdColumns.Add("CustomerId");

 //Specify the command to select incremental changes.
 //In this command and other commands, session variables are
 //used to pass information at runtime. DbSyncSession.SyncMetadataOnly
 //and SyncMinTimestamp are two of the string constants that
 //the DbSyncSession class exposes. You could also include
 //@sync_metadata_only and @sync_min_timestamp directly in your
 //queries:
 //* sync_metadata_only is used by Sync Services as an optimization
 // in some queries.
 //* The value of the sync_min_timestamp session variable is compared to
 // values in the sync_row_timestamp column in the tracking table to
 // determine which rows to select.

 SqlCommand chgsCustomerCmd = new SqlCommand();
 chgsCustomerCmd.CommandType = CommandType.StoredProcedure;
 chgsCustomerCmd.CommandText = "Sales.sp_Customer_SelectChanges";
 chgsCustomerCmd.Parameters.Add("@" + DbSyncSession.SyncMetadataOnly, SqlDbType.Int);
 chgsCustomerCmd.Parameters.Add("@" + DbSyncSession.SyncMinTimestamp, SqlDbType.BigInt);
 chgsCustomerCmd.Parameters.Add("@" + DbSyncSession.SyncInitialize, SqlDbType.Int);

 adapterCustomer.SelectIncrementalChangesCommand = chgsCustomerCmd;

 //Specify the command to insert rows.
 //The sync_row_count session variable is used in this command
 //and other commands to return a count of the rows affected by an operation.
 //A count of 0 indicates that an operation failed.

 SqlCommand insCustomerCmd = new SqlCommand();
 insCustomerCmd.CommandType = CommandType.StoredProcedure;
 insCustomerCmd.CommandText = "Sales.sp_Customer_ApplyInsert";
 insCustomerCmd.Parameters.Add("@CustomerId", SqlDbType.UniqueIdentifier);
 insCustomerCmd.Parameters.Add("@CustomerName", SqlDbType.NVarChar);
 insCustomerCmd.Parameters.Add("@SalesPerson", SqlDbType.NVarChar);
 insCustomerCmd.Parameters.Add("@CustomerType", SqlDbType.NVarChar);
 insCustomerCmd.Parameters.Add("@" + DbSyncSession.SyncRowCount, SqlDbType.Int).Direction = ParameterDirection.Output;

 adapterCustomer.InsertCommand = insCustomerCmd;

 //Specify the command to update rows.
 //The value of the sync_min_timestamp session variable is compared to
 //values in the sync_row_timestamp column in the tracking table to
 //determine which rows to update.

 SqlCommand updCustomerCmd = new SqlCommand();
 updCustomerCmd.CommandType = CommandType.StoredProcedure;
 updCustomerCmd.CommandText = "Sales.sp_Customer_ApplyUpdate";
 updCustomerCmd.Parameters.Add("@CustomerId", SqlDbType.UniqueIdentifier);
 updCustomerCmd.Parameters.Add("@CustomerName", SqlDbType.NVarChar);
 updCustomerCmd.Parameters.Add("@SalesPerson", SqlDbType.NVarChar);
 updCustomerCmd.Parameters.Add("@CustomerType", SqlDbType.NVarChar);
 updCustomerCmd.Parameters.Add("@" + DbSyncSession.SyncMinTimestamp, SqlDbType.BigInt);
 updCustomerCmd.Parameters.Add("@" + DbSyncSession.SyncRowCount, SqlDbType.Int).Direction = ParameterDirection.Output;
 updCustomerCmd.Parameters.Add("@" + DbSyncSession.SyncForceWrite, SqlDbType.Int);

 adapterCustomer.UpdateCommand = updCustomerCmd;

 //Specify the command to delete rows.
 //The value of the sync_min_timestamp session variable is compared to
 //values in the sync_row_timestamp column in the tracking table to
 //determine which rows to delete.

 SqlCommand delCustomerCmd = new SqlCommand();
 delCustomerCmd.CommandType = CommandType.StoredProcedure;
 delCustomerCmd.CommandText = "Sales.sp_Customer_ApplyDelete";
 delCustomerCmd.Parameters.Add("@CustomerId", SqlDbType.UniqueIdentifier);
 delCustomerCmd.Parameters.Add("@" + DbSyncSession.SyncMinTimestamp, SqlDbType.BigInt);
 delCustomerCmd.Parameters.Add("@" + DbSyncSession.SyncRowCount, SqlDbType.Int).Direction = ParameterDirection.Output;

 adapterCustomer.DeleteCommand = delCustomerCmd;

 //Specify the command to select any conflicting rows.

 SqlCommand selRowCustomerCmd = new SqlCommand();
 selRowCustomerCmd.CommandType = CommandType.StoredProcedure;
 selRowCustomerCmd.CommandText = "Sales.sp_Customer_SelectRow";
 selRowCustomerCmd.Parameters.Add("@CustomerId", SqlDbType.UniqueIdentifier);

 adapterCustomer.SelectRowCommand = selRowCustomerCmd;

 //Specify the command to insert metadata rows.
 //The session variables in this command relate to columns in
 //the tracking table.

 SqlCommand insMetadataCustomerCmd = new SqlCommand();
 insMetadataCustomerCmd.CommandType = CommandType.StoredProcedure;
 insMetadataCustomerCmd.CommandText = "Sales.sp_Customer_InsertMetadata";
 insMetadataCustomerCmd.Parameters.Add("@CustomerId", SqlDbType.UniqueIdentifier);
 insMetadataCustomerCmd.Parameters.Add("@" + DbSyncSession.SyncCreatePeerKey, SqlDbType.Int);
 insMetadataCustomerCmd.Parameters.Add("@" + DbSyncSession.SyncCreatePeerTimestamp, SqlDbType.BigInt);
 insMetadataCustomerCmd.Parameters.Add("@" + DbSyncSession.SyncUpdatePeerKey, SqlDbType.Int);
 insMetadataCustomerCmd.Parameters.Add("@" + DbSyncSession.SyncUpdatePeerTimestamp, SqlDbType.BigInt);
 insMetadataCustomerCmd.Parameters.Add("@" + DbSyncSession.SyncRowIsTombstone, SqlDbType.Int);
 insMetadataCustomerCmd.Parameters.Add("@" + DbSyncSession.SyncRowCount, SqlDbType.Int).Direction = ParameterDirection.Output;

 adapterCustomer.InsertMetadataCommand = insMetadataCustomerCmd;

 //Specify the command to update metadata rows.

 SqlCommand updMetadataCustomerCmd = new SqlCommand();
 updMetadataCustomerCmd.CommandType = CommandType.StoredProcedure;
 updMetadataCustomerCmd.CommandText = "Sales.sp_Customer_UpdateMetadata";
 updMetadataCustomerCmd.Parameters.Add("@CustomerId", SqlDbType.UniqueIdentifier);
 updMetadataCustomerCmd.Parameters.Add("@" + DbSyncSession.SyncCreatePeerKey, SqlDbType.Int);
 updMetadataCustomerCmd.Parameters.Add("@" + DbSyncSession.SyncCreatePeerTimestamp, SqlDbType.BigInt);
 updMetadataCustomerCmd.Parameters.Add("@" + DbSyncSession.SyncUpdatePeerKey, SqlDbType.Int);
 updMetadataCustomerCmd.Parameters.Add("@" + DbSyncSession.SyncUpdatePeerTimestamp, SqlDbType.BigInt);
 updMetadataCustomerCmd.Parameters.Add("@" + DbSyncSession.SyncCheckConcurrency, SqlDbType.Int);
 updMetadataCustomerCmd.Parameters.Add("@" + DbSyncSession.SyncRowTimestamp, SqlDbType.BigInt);
 updMetadataCustomerCmd.Parameters.Add("@" + DbSyncSession.SyncRowCount, SqlDbType.Int).Direction = ParameterDirection.Output;

 adapterCustomer.UpdateMetadataCommand = updMetadataCustomerCmd;

 //Specify the command to delete metadata rows.

 SqlCommand delMetadataCustomerCmd = new SqlCommand();
 delMetadataCustomerCmd.CommandType = CommandType.StoredProcedure;
 delMetadataCustomerCmd.CommandText = "Sales.sp_Customer_DeleteMetadata";
 delMetadataCustomerCmd.Parameters.Add("@CustomerId", SqlDbType.UniqueIdentifier);
 delMetadataCustomerCmd.Parameters.Add("@" + DbSyncSession.SyncCheckConcurrency, SqlDbType.Int);
 delMetadataCustomerCmd.Parameters.Add("@" + DbSyncSession.SyncRowTimestamp, SqlDbType.BigInt);
 delMetadataCustomerCmd.Parameters.Add("@" + DbSyncSession.SyncRowCount, SqlDbType.Int).Direction = ParameterDirection.Output;

 adapterCustomer.DeleteMetadataCommand = delMetadataCustomerCmd;

 //Specify the command to select metadata rows for cleanup.

 SqlCommand selMetadataCustomerCmd = new SqlCommand();
 selMetadataCustomerCmd.CommandType = CommandType.StoredProcedure;
 selMetadataCustomerCmd.CommandText = "Sales.sp_Customer_SelectMetadata";
 selMetadataCustomerCmd.Parameters.Add("@metadata_aging_in_hours", SqlDbType.Int).Value = MetadataAgingInHours;

 adapterCustomer.SelectMetadataForCleanupCommand = selMetadataCustomerCmd;

 peerProvider.SyncAdapters.Add(adapterCustomer);

 // Configure commands that relate to the provider itself rather
 // than the DbSyncAdapter object for each table:
 // * SelectNewTimestampCommand: Returns the new high watermark for
 // the current synchronization session.
 // * SelectScopeInfoCommand: Returns sync knowledge, cleanup knowledge,
 // and a scope version (timestamp).
 // * UpdateScopeInfoCommand: Sets new values for sync knowledge and cleanup knowledge.

 //Select a new timestamp.
 //During each synchronization, the new value and
 //the last value from the previous synchronization
 //are used: the set of changes between these upper and
 //lower bounds is synchronized.

 SqlCommand selectNewTimestampCommand = new SqlCommand();
 string newTimestampVariable = "@" + DbSyncSession.SyncNewTimestamp;
 selectNewTimestampCommand.CommandText = "SELECT " + newTimestampVariable + " = min_active_rowversion() - 1";
 selectNewTimestampCommand.Parameters.Add(newTimestampVariable, SqlDbType.Timestamp);
 selectNewTimestampCommand.Parameters[newTimestampVariable].Direction = ParameterDirection.Output;

 peerProvider.SelectNewTimestampCommand = selectNewTimestampCommand;

 //Specify the command to select local replica metadata.
 //Set session variables with values from the Sales.ScopeInfo
 //metadata table.

 SqlCommand selReplicaInfoCmd = new SqlCommand();
 selReplicaInfoCmd.CommandType = CommandType.Text;
 selReplicaInfoCmd.CommandText = "SELECT " +
 "@" + DbSyncSession.SyncScopeId + " = scope_id, " +
 "@" + DbSyncSession.SyncScopeKnowledge + " = scope_sync_knowledge, " +
 "@" + DbSyncSession.SyncScopeCleanupKnowledge + " = scope_tombstone_cleanup_knowledge, " +
 "@" + DbSyncSession.SyncScopeTimestamp + " = scope_timestamp " +
 "FROM Sales.ScopeInfo " +
 "WHERE scope_name = @" + DbSyncSession.SyncScopeName;
 selReplicaInfoCmd.Parameters.Add("@" + DbSyncSession.SyncScopeName, SqlDbType.NVarChar, 100);
 selReplicaInfoCmd.Parameters.Add("@" + DbSyncSession.SyncScopeId, SqlDbType.UniqueIdentifier).Direction = ParameterDirection.Output;
 selReplicaInfoCmd.Parameters.Add("@" + DbSyncSession.SyncScopeKnowledge, SqlDbType.VarBinary, 10000).Direction = ParameterDirection.Output;
 selReplicaInfoCmd.Parameters.Add("@" + DbSyncSession.SyncScopeCleanupKnowledge, SqlDbType.VarBinary, 10000).Direction = ParameterDirection.Output;
 selReplicaInfoCmd.Parameters.Add("@" + DbSyncSession.SyncScopeTimestamp, SqlDbType.BigInt).Direction = ParameterDirection.Output;

 peerProvider.SelectScopeInfoCommand = selReplicaInfoCmd;

 //Specify the command to select local replica metadata.
 //Update the Sales.ScopeInfo metadata table with values
 //from session variables.

 SqlCommand updReplicaInfoCmd = new SqlCommand();
 updReplicaInfoCmd.CommandType = CommandType.Text;
 updReplicaInfoCmd.CommandText = "UPDATE Sales.ScopeInfo SET " +
 "scope_sync_knowledge = @" + DbSyncSession.SyncScopeKnowledge + ", " +
 "scope_tombstone_cleanup_knowledge = @" + DbSyncSession.SyncScopeCleanupKnowledge + " " +
 "WHERE scope_name = @" + DbSyncSession.SyncScopeName + " AND " +
 " (@" + DbSyncSession.SyncCheckConcurrency + " = 0 or scope_timestamp = @" + DbSyncSession.SyncScopeTimestamp + "); " +
 "SET @" + DbSyncSession.SyncRowCount + " = @@rowcount";
 updReplicaInfoCmd.Parameters.Add("@" + DbSyncSession.SyncScopeKnowledge, SqlDbType.VarBinary, 10000);
 updReplicaInfoCmd.Parameters.Add("@" + DbSyncSession.SyncScopeCleanupKnowledge, SqlDbType.VarBinary, 10000);
 updReplicaInfoCmd.Parameters.Add("@" + DbSyncSession.SyncScopeName, SqlDbType.NVarChar, 100);
 updReplicaInfoCmd.Parameters.Add("@" + DbSyncSession.SyncCheckConcurrency, SqlDbType.Int);
 updReplicaInfoCmd.Parameters.Add("@" + DbSyncSession.SyncScopeTimestamp, SqlDbType.BigInt);
 updReplicaInfoCmd.Parameters.Add("@" + DbSyncSession.SyncRowCount, SqlDbType.Int).Direction = ParameterDirection.Output;

 peerProvider.UpdateScopeInfoCommand = updReplicaInfoCmd;

 return peerProvider;
 }

 }

 //Handle the statistics that are returned by the SyncAgent.
 public class SampleStats
 {
 public void DisplayStats(SyncOperationStatistics syncStatistics, string syncType)
 {
 Console.WriteLine(String.Empty);
 if (syncType == "initial")
 {
 Console.WriteLine("****** Initial Synchronization ******");
 }
 else if (syncType == "subsequent")
 {
 Console.WriteLine("***** Subsequent Synchronization ****");
 }

 Console.WriteLine("Start Time: " + syncStatistics.SyncStartTime);
 Console.WriteLine("Total Changes Uploaded: " + syncStatistics.UploadChangesTotal);
 Console.WriteLine("Total Changes Downloaded: " + syncStatistics.DownloadChangesTotal);
 Console.WriteLine("Complete Time: " + syncStatistics.SyncEndTime);
 Console.WriteLine(String.Empty);
 }
 }

 public class Utility
 {

 //Return the peer1 connection string.
 public string Peer1ConnString
 {

 get { return "Data Source=VS2010CTP\\SQLEXPRESS; Initial Catalog=SyncSamplesDb_Peer1; Integrated Security=True"; }

 }

 //Return the peer2 connection string.
 public string Peer2ConnString
 {

 get { return "Data Source=VS2010CTP\\SQLEXPRESS; Initial Catalog=SyncSamplesDb_Peer2; Integrated Security=True"; }

 }

 //Return the peer3 connection string.
 public string Peer3ConnString
 {

 get { return "Data Source=VS2010CTP\\SQLEXPRESS; Initial Catalog=SyncSamplesDb_Peer3; Integrated Security=True"; }

 }

 //Make peer changes that are synchronized on the second
 //synchronization.
 public void MakeDataChangesOnPeer(string peerConnString, string tableName)
 {
 int rowCount = 0;

 using (SqlConnection peerConn = new SqlConnection(peerConnString))
 {
 SqlCommand sqlCommand = peerConn.CreateCommand();

 if (tableName == "Customer")
 {

 if (peerConnString == this.Peer1ConnString)
 {
 sqlCommand.CommandText =
 "INSERT INTO Sales.Customer (CustomerName, SalesPerson, CustomerType) " +
 "VALUES ('Cycle Mart', 'James Bailey', 'Retail')";
 }
 else if (peerConnString == this.Peer2ConnString)
 {
 sqlCommand.CommandText =
 "UPDATE Sales.Customer " +
 "SET SalesPerson = 'James Bailey' " +
 "WHERE CustomerName = 'Tandem Bicycle Store' ";
 }
 else if (peerConnString == this.Peer3ConnString)

 sqlCommand.CommandText =
 "DELETE FROM Sales.Customer WHERE CustomerName = 'Sharp Bikes'";
 }

 peerConn.Open();
 rowCount = sqlCommand.ExecuteNonQuery();
 peerConn.Close();
 }

 Console.WriteLine("Total rows inserted, updated, or deleted at all peers: " + rowCount / 2);
 }

 //Make conflicting peer changes that are synchronized on the second
 //synchronization.
 public void MakeConflictingChangesOnPeer(string peerConnString, string tableName)
 {
 int rowCount = 0;

 using (SqlConnection peerConn = new SqlConnection(peerConnString))
 {
 SqlCommand sqlCommand = peerConn.CreateCommand();

 if (tableName == "Customer")
 {

 if (peerConnString == this.Peer1ConnString)
 {
 sqlCommand.CommandText =
 "UPDATE Sales.Customer " +
 "SET SalesPerson = 'ChangeFromPeerOne' " +
 "WHERE CustomerName = 'Tandem Bicycle Store' ";
 }
 else if (peerConnString == this.Peer2ConnString)
 {
 sqlCommand.CommandText =
 "UPDATE Sales.Customer " +
 "SET SalesPerson = 'ChangeFromPeerTwo' " +
 "WHERE CustomerName = 'Tandem Bicycle Store' ";
 }
 else if (peerConnString == this.Peer3ConnString)

 sqlCommand.CommandText =
 "UPDATE Sales.Customer " +
 "SET SalesPerson = 'ChangeFromPeerThree' " +
 "WHERE CustomerName = 'Tandem Bicycle Store' ";
 }

 peerConn.Open();
 rowCount = sqlCommand.ExecuteNonQuery();
 peerConn.Close();
 }

 Console.WriteLine("Total rows inserted, updated, or deleted at all peers: " + rowCount / 2);
 }

 public void MakeFailingChangeOnPeer(string peerConnString)
 {
 int rowCount = 0;

 using (SqlConnection peerConn = new SqlConnection(peerConnString))
 {
 SqlCommand sqlCommand = peerConn.CreateCommand();

 if (peerConnString == this.Peer2ConnString)
 {
 sqlCommand.CommandText =
 "DELETE FROM Sales.Customer " +
 "WHERE CustomerName = 'Rural Cycle Emporium'";
 }

 peerConn.Open();
 rowCount = sqlCommand.ExecuteNonQuery();
 peerConn.Close();
 }

 Console.WriteLine("Total rows inserted, updated, or deleted at all peers: " + rowCount / 2);
 }

 public void CleanUpPeer(string peerConnString)
 {
 using (SqlConnection peerConn = new SqlConnection(peerConnString))
 {
 SqlCommand sqlCommand = peerConn.CreateCommand();
 sqlCommand.CommandType = CommandType.StoredProcedure;
 sqlCommand.CommandText = "usp_ResetPeerData";

 peerConn.Open();
 sqlCommand.ExecuteNonQuery();
 peerConn.Close();
 }
 }
 }
 }
}

Visual Basic
Imports System
Imports System.IO
Imports System.Text
Imports System.Data
Imports System.Data.SqlClient
Imports Microsoft.Synchronization
Imports Microsoft.Synchronization.Data

Class Program

 Shared Sub Main(ByVal args() As String)

 'The Utility class handles all functionality that is not
 'directly related to synchronization, such as holding peerConnection
 'string information and making changes to the server database.
 Dim util As New Utility()

 'The SampleStats class handles information from the SyncStatistics
 'object that the Synchronize method returns.
 Dim sampleStats As New SampleStats()

 Try
 'Initial synchronization. Instantiate the SyncOrchestrator
 'and call Synchronize. Note that data is not synchronized during the
 'session between peer 1 and peer 3, because all rows have already
 'been delivered to peer 3 during its synchronization session with peer 2.
 Dim sampleSyncAgent As SyncOrchestrator
 Dim syncStatistics As SyncOperationStatistics

 sampleSyncAgent = New SampleSyncAgent(util.Peer1ConnString, util.Peer2ConnString)
 syncStatistics = sampleSyncAgent.Synchronize()
 sampleStats.DisplayStats(syncStatistics, "initial")

 sampleSyncAgent = New SampleSyncAgent(util.Peer2ConnString, util.Peer3ConnString)
 syncStatistics = sampleSyncAgent.Synchronize()
 sampleStats.DisplayStats(syncStatistics, "initial")

 sampleSyncAgent = New SampleSyncAgent(util.Peer1ConnString, util.Peer3ConnString)
 syncStatistics = sampleSyncAgent.Synchronize()
 sampleStats.DisplayStats(syncStatistics, "initial")

 Catch ex As DbOutdatedSyncException
 Console.WriteLine("Outdated Knowledge: " & ex.OutdatedPeerSyncKnowledge.ToString() _
 & " Clean up knowledge: " + ex.MissingCleanupKnowledge.ToString())
 Catch ex As Exception
 Console.WriteLine(ex.Message)
 End Try

 'Make changes in each peer database.
 util.MakeDataChangesOnPeer(util.Peer1ConnString, "Customer")
 util.MakeDataChangesOnPeer(util.Peer2ConnString, "Customer")
 util.MakeDataChangesOnPeer(util.Peer3ConnString, "Customer")

 Try
 'Subsequent synchronization. Changes are now synchronized between all
 'peers.
 Dim sampleSyncAgent As SyncOrchestrator
 Dim syncStatistics As SyncOperationStatistics

 sampleSyncAgent = New SampleSyncAgent(util.Peer1ConnString, util.Peer2ConnString)
 syncStatistics = sampleSyncAgent.Synchronize()
 sampleStats.DisplayStats(syncStatistics, "subsequent")

 sampleSyncAgent = New SampleSyncAgent(util.Peer2ConnString, util.Peer3ConnString)
 syncStatistics = sampleSyncAgent.Synchronize()
 sampleStats.DisplayStats(syncStatistics, "subsequent")

 sampleSyncAgent = New SampleSyncAgent(util.Peer1ConnString, util.Peer3ConnString)
 syncStatistics = sampleSyncAgent.Synchronize()
 sampleStats.DisplayStats(syncStatistics, "subsequent")

 Catch ex As DbOutdatedSyncException
 Console.WriteLine("Outdated Knowledge: " & ex.OutdatedPeerSyncKnowledge.ToString() _
 & " Clean up knowledge: " + ex.MissingCleanupKnowledge.ToString())
 Catch ex As Exception
 Console.WriteLine(ex.Message)
 End Try

 'Return peer data back to its original state.
 util.CleanUpPeer(util.Peer1ConnString)
 util.CleanUpPeer(util.Peer2ConnString)
 util.CleanUpPeer(util.Peer3ConnString)

 'Exit.
 Console.Write(vbLf + "Press Enter to close the window.")
 Console.ReadLine()

 End Sub 'Main

End Class 'Program

'Create a class that is derived from
'Microsoft.Synchronization.SyncOrchestrator.

Public Class SampleSyncAgent
 Inherits SyncOrchestrator

 Public Sub New(ByVal localProviderConnString As String, ByVal remoteProviderConnString As String)

 'Instantiate the sample provider that allows us to create a provider
 'for both of the peers that are being synchronized.
 Dim sampleSyncProvider As New SampleSyncProvider()

 'Instantiate a DbSyncProvider for the local peer and the remote peer.
 'For example, if this code is running at peer1 and is
 'synchronizing with peer2, peer1 would be the local provider
 'and peer2 the remote provider.

 Dim localProvider As New DbSyncProvider()
 Dim remoteProvider As New DbSyncProvider()

 'Create a provider by using the SetupSyncProvider on the sample class.
 sampleSyncProvider.SetupSyncProvider(localProviderConnString, localProvider)
 localProvider.SyncProviderPosition = SyncProviderPosition.Local

 sampleSyncProvider.SetupSyncProvider(remoteProviderConnString, remoteProvider)
 remoteProvider.SyncProviderPosition = SyncProviderPosition.Remote

 'Specify the local and remote providers that should be synchronized,
 'and the direction and order of changes. In this case, changes are first
 'uploaded from local to remote and then downloaded in the other direction.
 Me.LocalProvider = localProvider
 Me.RemoteProvider = remoteProvider
 Me.Direction = SyncDirectionOrder.UploadAndDownload

 End Sub 'New
End Class 'SampleSyncAgent

Public Class SampleSyncProvider

 Public Function SetupSyncProvider(ByVal peerConnString As String, ByVal peerProvider As DbSyncProvider) As DbSyncProvider

 'Set the amount of time to retain metadata.
 Const MetadataAgingInHours As Integer = 100

 Dim peerConnection As New SqlConnection(peerConnString)
 peerProvider.Connection = peerConnection
 peerProvider.ScopeName = "Sales"

 'Create a DbSyncAdapter object for the Customer table and associate it
 'with the DbSyncProvider. Following the DataAdapter style in ADO.NET,
 'DbSyncAdapter is the equivalent for synchronization. The commands that
 'are specified for the DbSyncAdapter object call stored procedures
 ' that are created in each peer database.

 Dim adapterCustomer As New DbSyncAdapter("Customer")

 'Specify the primary key, which Sync Services uses
 'to identify each row during synchronization.
 adapterCustomer.RowIdColumns.Add("CustomerId")

 'Specify the command to select incremental changes.
 'In this command and other commands, session variables are
 'used to pass information at runtime. DbSyncSession.SyncMetadataOnly
 'and SyncMinTimestamp are two of the string constants that
 'the DbSyncSession class exposes. You could also include
 '@sync_metadata_only and @sync_min_timestamp directly in your
 'queries:
 '* sync_metadata_only is used by Sync Services as an optimization
 ' in some queries.
 '* The value of the sync_min_timestamp session variable is compared to
 ' values in the sync_row_timestamp column in the tracking table to
 ' determine which rows to select.

 Dim chgsCustomerCmd As New SqlCommand()

 With chgsCustomerCmd
 .CommandType = CommandType.StoredProcedure
 .CommandText = "Sales.sp_Customer_SelectChanges"
 .Parameters.Add("@" + DbSyncSession.SyncMetadataOnly, SqlDbType.Int)
 .Parameters.Add("@" + DbSyncSession.SyncMinTimestamp, SqlDbType.BigInt)
 .Parameters.Add("@" + DbSyncSession.SyncInitialize, SqlDbType.Int)
 End With

 adapterCustomer.SelectIncrementalChangesCommand = chgsCustomerCmd

 'Specify the command to insert rows.
 'The sync_row_count session variable is used in this command
 'and other commands to return a count of the rows affected by an operation.
 'A count of 0 indicates that an operation failed.

 Dim insCustomerCmd As New SqlCommand()

 With insCustomerCmd
 .CommandType = CommandType.StoredProcedure
 .CommandText = "Sales.sp_Customer_ApplyInsert"
 .Parameters.Add("@CustomerId", SqlDbType.UniqueIdentifier)
 .Parameters.Add("@CustomerName", SqlDbType.NVarChar)
 .Parameters.Add("@SalesPerson", SqlDbType.NVarChar)
 .Parameters.Add("@CustomerType", SqlDbType.NVarChar)
 .Parameters.Add("@" + DbSyncSession.SyncRowCount, SqlDbType.Int).Direction = ParameterDirection.Output
 End With

 adapterCustomer.InsertCommand = insCustomerCmd

 'Specify the command to update rows.
 'The value of the sync_min_timestamp session variable is compared to
 'values in the sync_row_timestamp column in the tracking table to
 'determine which rows to update.

 Dim updCustomerCmd As New SqlCommand()

 With updCustomerCmd
 .CommandType = CommandType.StoredProcedure
 .CommandText = "Sales.sp_Customer_ApplyUpdate"
 .Parameters.Add("@CustomerId", SqlDbType.UniqueIdentifier)
 .Parameters.Add("@CustomerName", SqlDbType.NVarChar)
 .Parameters.Add("@SalesPerson", SqlDbType.NVarChar)
 .Parameters.Add("@CustomerType", SqlDbType.NVarChar)
 .Parameters.Add("@" + DbSyncSession.SyncMinTimestamp, SqlDbType.BigInt)
 .Parameters.Add("@" + DbSyncSession.SyncRowCount, SqlDbType.Int).Direction = ParameterDirection.Output
 .Parameters.Add("@" + DbSyncSession.SyncForceWrite, SqlDbType.Int)
 End With

 adapterCustomer.UpdateCommand = updCustomerCmd

 'Specify the command to delete rows.
 'The value of the sync_min_timestamp session variable is compared to
 'values in the sync_row_timestamp column in the tracking table to
 'determine which rows to delete.

 Dim delCustomerCmd As New SqlCommand()

 With delCustomerCmd
 .CommandType = CommandType.StoredProcedure
 .CommandText = "Sales.sp_Customer_ApplyDelete"
 .Parameters.Add("@CustomerId", SqlDbType.UniqueIdentifier)
 .Parameters.Add("@" + DbSyncSession.SyncMinTimestamp, SqlDbType.BigInt)
 .Parameters.Add("@" + DbSyncSession.SyncRowCount, SqlDbType.Int).Direction = ParameterDirection.Output
 End With

 adapterCustomer.DeleteCommand = delCustomerCmd

 'Specify the command to select any conflicting rows.

 Dim selRowCustomerCmd As New SqlCommand()

 With selRowCustomerCmd
 .CommandType = CommandType.StoredProcedure
 .CommandText = "Sales.sp_Customer_SelectRow"
 .Parameters.Add("@CustomerId", SqlDbType.UniqueIdentifier)
 End With

 adapterCustomer.SelectRowCommand = selRowCustomerCmd

 'Specify the command to insert metadata rows.
 'The session variables in this command relate to columns in
 'the tracking table. These are the same columns
 'that were specified as DbSyncAdapter properties at the beginning
 'of this code example.

 Dim insMetadataCustomerCmd As New SqlCommand()

 With insMetadataCustomerCmd
 .CommandType = CommandType.StoredProcedure
 .CommandText = "Sales.sp_Customer_InsertMetadata"
 .Parameters.Add("@CustomerId", SqlDbType.UniqueIdentifier)
 .Parameters.Add("@" + DbSyncSession.SyncCreatePeerKey, SqlDbType.Int)
 .Parameters.Add("@" + DbSyncSession.SyncCreatePeerTimestamp, SqlDbType.BigInt)
 .Parameters.Add("@" + DbSyncSession.SyncUpdatePeerKey, SqlDbType.Int)
 .Parameters.Add("@" + DbSyncSession.SyncUpdatePeerTimestamp, SqlDbType.BigInt)
 .Parameters.Add("@" + DbSyncSession.SyncRowIsTombstone, SqlDbType.Int)
 .Parameters.Add("@" + DbSyncSession.SyncRowCount, SqlDbType.Int).Direction = ParameterDirection.Output
 End With

 adapterCustomer.InsertMetadataCommand = insMetadataCustomerCmd

 'Specify the command to update metadata rows.

 Dim updMetadataCustomerCmd As New SqlCommand()

 With updMetadataCustomerCmd
 .CommandType = CommandType.StoredProcedure
 .CommandText = "Sales.sp_Customer_UpdateMetadata"
 .Parameters.Add("@CustomerId", SqlDbType.UniqueIdentifier)
 .Parameters.Add("@" + DbSyncSession.SyncCreatePeerKey, SqlDbType.Int)
 .Parameters.Add("@" + DbSyncSession.SyncCreatePeerTimestamp, SqlDbType.BigInt)
 .Parameters.Add("@" + DbSyncSession.SyncUpdatePeerKey, SqlDbType.Int)
 .Parameters.Add("@" + DbSyncSession.SyncUpdatePeerTimestamp, SqlDbType.BigInt)
 .Parameters.Add("@" + DbSyncSession.SyncCheckConcurrency, SqlDbType.Int)
 .Parameters.Add("@" + DbSyncSession.SyncRowTimestamp, SqlDbType.BigInt)
 .Parameters.Add("@" + DbSyncSession.SyncRowCount, SqlDbType.Int).Direction = ParameterDirection.Output
 End With

 adapterCustomer.UpdateMetadataCommand = updMetadataCustomerCmd

 'Specify the command to delete metadata rows.

 Dim delMetadataCustomerCmd As New SqlCommand()

 With delMetadataCustomerCmd
 .CommandType = CommandType.StoredProcedure
 .CommandText = "Sales.sp_Customer_DeleteMetadata"
 .Parameters.Add("@CustomerId", SqlDbType.UniqueIdentifier)
 .Parameters.Add("@" + DbSyncSession.SyncCheckConcurrency, SqlDbType.Int)
 .Parameters.Add("@" + DbSyncSession.SyncRowTimestamp, SqlDbType.BigInt)
 .Parameters.Add("@" + DbSyncSession.SyncRowCount, SqlDbType.Int).Direction = ParameterDirection.Output
 End With

 adapterCustomer.DeleteMetadataCommand = delMetadataCustomerCmd

 'Specify the command to select metadata rows for cleanup.

 Dim selMetadataCustomerCmd As New SqlCommand()

 With selMetadataCustomerCmd
 .CommandType = CommandType.StoredProcedure
 .CommandText = "Sales.sp_Customer_SelectMetadata"
 .Parameters.Add("@metadata_aging_in_hours", SqlDbType.Int).Value = MetadataAgingInHours
 End With

 adapterCustomer.SelectMetadataForCleanupCommand = selMetadataCustomerCmd

 peerProvider.SyncAdapters.Add(adapterCustomer)

 ' Configure commands that relate to the provider itself rather
 ' than the DbSyncAdapter object for each table:
 ' * SelectNewTimestampCommand: Returns the new high watermark for
 ' the current synchronization session.
 ' * SelectScopeInfoCommand: Returns sync knowledge, cleanup knowledge,
 ' and a scope version (timestamp).
 ' * UpdateScopeInfoCommand: Sets new values for sync knowledge and cleanup knowledge.
 'Select a new timestamp.
 'During each synchronization, the new value and
 'the last value from the previous synchronization
 'are used: the set of changes between these upper and
 'lower bounds is synchronized.

 Dim newTimestampVariable As String = "@" + DbSyncSession.SyncNewTimestamp

 Dim selectNewTimestampCommand As New SqlCommand()

 With selectNewTimestampCommand
 .CommandText = "SELECT " + newTimestampVariable + " = min_active_rowversion() - 1"
 .Parameters.Add(newTimestampVariable, SqlDbType.Timestamp)
 .Parameters(newTimestampVariable).Direction = ParameterDirection.Output
 End With

 peerProvider.SelectNewTimestampCommand = selectNewTimestampCommand

 'Specify the command to select local replica metadata.
 'Set session variables with values from the Sales.ScopeInfo
 'metadata table.

 Dim selReplicaInfoCmd As New SqlCommand()

 With selReplicaInfoCmd
 .CommandType = CommandType.Text
 .CommandText = "SELECT " _
 & "@" + DbSyncSession.SyncScopeId + " = scope_id, " _
 & "@" + DbSyncSession.SyncScopeKnowledge + " = scope_sync_knowledge, " _
 & "@" + DbSyncSession.SyncScopeCleanupKnowledge + " = scope_tombstone_cleanup_knowledge, " _
 & "@" + DbSyncSession.SyncScopeTimestamp + " = scope_timestamp " _
 & "FROM Sales.ScopeInfo " _
 & "WHERE scope_name = @" + DbSyncSession.SyncScopeName
 .Parameters.Add("@" + DbSyncSession.SyncScopeName, SqlDbType.NVarChar, 100)
 .Parameters.Add("@" + DbSyncSession.SyncScopeId, SqlDbType.UniqueIdentifier).Direction = ParameterDirection.Output
 .Parameters.Add("@" + DbSyncSession.SyncScopeKnowledge, SqlDbType.VarBinary, 10000).Direction = ParameterDirection.Output
 .Parameters.Add("@" + DbSyncSession.SyncScopeCleanupKnowledge, SqlDbType.VarBinary, 10000).Direction = ParameterDirection.Output
 .Parameters.Add("@" + DbSyncSession.SyncScopeTimestamp, SqlDbType.BigInt).Direction = ParameterDirection.Output
 End With

 peerProvider.SelectScopeInfoCommand = selReplicaInfoCmd

 'Specify the command to select local replica metadata.
 'Update the Sales.ScopeInfo metadata table with values
 'from session variables.

 Dim updReplicaInfoCmd As New SqlCommand()

 With updReplicaInfoCmd
 .CommandType = CommandType.Text
 .CommandText = "UPDATE Sales.ScopeInfo SET " _
 & "scope_sync_knowledge = @" + DbSyncSession.SyncScopeKnowledge + ", " _
 & "scope_tombstone_cleanup_knowledge = @" + DbSyncSession.SyncScopeCleanupKnowledge + " " _
 & "WHERE scope_name = @" + DbSyncSession.SyncScopeName + " AND " _
 & " (@" + DbSyncSession.SyncCheckConcurrency + " = 0 or scope_timestamp = @" + DbSyncSession.SyncScopeTimestamp + "); " _
 & "SET @" + DbSyncSession.SyncRowCount + " = @@rowcount"
 .Parameters.Add("@" + DbSyncSession.SyncScopeKnowledge, SqlDbType.VarBinary, 10000)
 .Parameters.Add("@" + DbSyncSession.SyncScopeCleanupKnowledge, SqlDbType.VarBinary, 10000)
 .Parameters.Add("@" + DbSyncSession.SyncScopeName, SqlDbType.NVarChar, 100)
 .Parameters.Add("@" + DbSyncSession.SyncCheckConcurrency, SqlDbType.Int)
 .Parameters.Add("@" + DbSyncSession.SyncScopeTimestamp, SqlDbType.BigInt)
 .Parameters.Add("@" + DbSyncSession.SyncRowCount, SqlDbType.Int).Direction = ParameterDirection.Output
 End With

 peerProvider.UpdateScopeInfoCommand = updReplicaInfoCmd

 Return peerProvider

 End Function 'SetupSyncProvider

End Class 'SampleSyncProvider

'Handle the statistics that are returned by the SyncAgent.
Public Class SampleStats

 Public Sub DisplayStats(ByVal syncStatistics As SyncOperationStatistics, ByVal syncType As String)
 Console.WriteLine(String.Empty)
 If syncType = "initial" Then
 Console.WriteLine("****** Initial Synchronization ******")
 ElseIf syncType = "subsequent" Then
 Console.WriteLine("***** Subsequent Synchronization ****")
 End If

 Console.WriteLine("Start Time: " & syncStatistics.SyncStartTime)
 Console.WriteLine("Total Changes Uploaded: " & syncStatistics.UploadChangesTotal)
 Console.WriteLine("Total Changes Downloaded: " & syncStatistics.DownloadChangesTotal)
 Console.WriteLine("Complete Time: " & syncStatistics.SyncEndTime)
 Console.WriteLine(String.Empty)

 End Sub 'DisplayStats
End Class 'SampleStats

Public Class Utility

 'Return the peer1 connection string.
 Public ReadOnly Property Peer1ConnString() As String
 Get
 Return "Data Source=VS2010CTP\\SQLEXPRESS; Initial Catalog=SyncSamplesDb_Peer1; Integrated Security=True"
 End Get
 End Property

 'Return the peer2 connection string.
 Public ReadOnly Property Peer2ConnString() As String
 Get
 Return "Data Source=VS2010CTP\\SQLEXPRESS; Initial Catalog=SyncSamplesDb_Peer2; Integrated Security=True"
 End Get
 End Property

 'Return the peer3 connection string.
 Public ReadOnly Property Peer3ConnString() As String
 Get
 Return "Data Source=VS2010CTP\\SQLEXPRESS; Initial Catalog=SyncSamplesDb_Peer3; Integrated Security=True"
 End Get
 End Property

 'Make peer changes that are synchronized on the second
 'synchronization.
 Public Sub MakeDataChangesOnPeer(ByVal peerConnString As String, ByVal tableName As String)
 Dim rowCount As Integer = 0

 Dim peerConn As New SqlConnection(peerConnString)
 Try
 Dim sqlCommand As SqlCommand = peerConn.CreateCommand()

 If tableName = "Customer" Then

 If peerConnString = Me.Peer1ConnString Then
 sqlCommand.CommandText = "INSERT INTO Sales.Customer (CustomerName, SalesPerson, CustomerType) " + "VALUES ('Cycle Mart', 'James Bailey', 'Retail')"
 ElseIf peerConnString = Me.Peer2ConnString Then
 sqlCommand.CommandText = "UPDATE Sales.Customer " + "SET SalesPerson = 'James Bailey' " + "WHERE CustomerName = 'Tandem Bicycle Store' "
 ElseIf peerConnString = Me.Peer3ConnString Then

 sqlCommand.CommandText = "DELETE FROM Sales.Customer WHERE CustomerName = 'Sharp Bikes'"
 End If
 End If

 peerConn.Open()
 rowCount = sqlCommand.ExecuteNonQuery()
 peerConn.Close()
 Finally
 peerConn.Dispose()
 End Try

 Console.WriteLine("Total rows inserted, updated, or deleted at all peers: " & rowCount / 2)

 End Sub 'MakeDataChangesOnPeer

 'Make conflicting peer changes that are synchronized on the second
 'synchronization.
 Public Sub MakeConflictingChangesOnPeer(ByVal peerConnString As String, ByVal tableName As String)

 Dim rowCount As Integer = 0

 Dim peerConn As New SqlConnection(peerConnString)
 Try
 Dim sqlCommand As SqlCommand = peerConn.CreateCommand()

 If tableName = "Customer" Then

 If peerConnString = Me.Peer1ConnString Then
 sqlCommand.CommandText = _
 "UPDATE Sales.Customer " _
 & "SET SalesPerson = 'ChangeFromPeerOne' " _
 & "WHERE CustomerName = 'Tandem Bicycle Store'"
 ElseIf peerConnString = Me.Peer2ConnString Then
 sqlCommand.CommandText = _
 "UPDATE Sales.Customer " _
 & "SET SalesPerson = 'ChangeFromPeerTwo' " _
 & "WHERE CustomerName = 'Tandem Bicycle Store'"
 ElseIf peerConnString = Me.Peer3ConnString Then
 sqlCommand.CommandText = _
 "UPDATE Sales.Customer " _
 & "SET SalesPerson = 'ChangeFromPeerThree' " _
 & "WHERE CustomerName = 'Tandem Bicycle Store'"
 End If
 End If

 peerConn.Open()
 rowCount = sqlCommand.ExecuteNonQuery()
 peerConn.Close()
 Finally
 peerConn.Dispose()
 End Try

 Console.WriteLine("Total rows inserted, updated, or deleted at all peers: " & rowCount / 2)

 End Sub 'MakeConflictingChangesOnPeer

 Public Sub MakeFailingChangeOnPeer(ByVal peerConnString As String)

 Dim rowCount As Integer = 0

 Dim peerConn As New SqlConnection(peerConnString)
 Try
 Dim sqlCommand As SqlCommand = peerConn.CreateCommand()

 If peerConnString = Me.Peer2ConnString Then
 sqlCommand.CommandText = _
 "DELETE FROM Sales.Customer " _
 & "WHERE CustomerName = 'Rural Cycle Emporium'"
 End If

 peerConn.Open()
 rowCount = sqlCommand.ExecuteNonQuery()
 peerConn.Close()
 Finally
 peerConn.Dispose()
 End Try

 Console.WriteLine("Total rows inserted, updated, or deleted at all peers: " & rowCount / 2)

 End Sub 'MakeFailingChangeOnPeer

 Public Sub CleanUpPeer(ByVal peerConnString As String)
 Dim peerConn As New SqlConnection(peerConnString)
 Try
 Dim sqlCommand As SqlCommand = peerConn.CreateCommand()
 sqlCommand.CommandType = CommandType.StoredProcedure
 sqlCommand.CommandText = "usp_ResetPeerData"

 peerConn.Open()
 sqlCommand.ExecuteNonQuery()
 peerConn.Close()
 Finally
 peerConn.Dispose()
 End Try

 End Sub 'CleanUpPeer

End Class 'Utility
[bookmark: _Peer_Database_Configuration]Peer Database Configuration Script
This script creates a change-tracking infrastructure that is used for peer-to-peer synchronization scenarios.
-- Create databases for the Sync Services peer synchronization samples.
-- Enable snapshot isolation, which is recommended for databases that
-- participate in synchronization.
--
USE master
GO

IF EXISTS (SELECT [name] FROM [master].[sys].[databases]
			 WHERE [name] = N'SyncSamplesDb_Peer1')
	BEGIN
		DROP DATABASE SyncSamplesDb_Peer1
	END

CREATE DATABASE SyncSamplesDb_Peer1
GO

ALTER DATABASE SyncSamplesDb_Peer1 SET ALLOW_SNAPSHOT_ISOLATION ON
GO

IF EXISTS (SELECT [name] FROM [master].[sys].[databases]
			 WHERE [name] = N'SyncSamplesDb_Peer2')
	BEGIN
		DROP DATABASE SyncSamplesDb_Peer2
	END

CREATE DATABASE SyncSamplesDb_Peer2
GO

ALTER DATABASE SyncSamplesDb_Peer2 SET ALLOW_SNAPSHOT_ISOLATION ON
GO

IF EXISTS (SELECT [name] FROM [master].[sys].[databases]
			 WHERE [name] = N'SyncSamplesDb_Peer3')
	BEGIN
		DROP DATABASE SyncSamplesDb_Peer3
	END

CREATE DATABASE SyncSamplesDb_Peer3
GO

ALTER DATABASE SyncSamplesDb_Peer3 SET ALLOW_SNAPSHOT_ISOLATION ON

-- Loop through the three sample peer databases and
-- create objects in each database.
DECLARE @DbNames nvarchar(100)
SET @DbNames = 'SyncSamplesDb_Peer3__SyncSamplesDb_Peer2__SyncSamplesDb_Peer1__'

DECLARE @CurrentDbName nvarchar(100)

WHILE LEN(@DbNames) > 0
BEGIN

	SET @CurrentDbName = SUBSTRING(@DbNames, LEN(@DbNames) - 20 , 19)
	PRINT 'Creating objects in database ' + @CurrentDbName

	IF @CurrentDbName = 'SyncSamplesDb_Peer1'
	BEGIN
		USE SyncSamplesDb_Peer1		
	END
	ELSE IF @CurrentDbName = 'SyncSamplesDb_Peer2'
	BEGIN
		USE SyncSamplesDb_Peer2
	END
	ELSE IF @CurrentDbName = 'SyncSamplesDb_Peer3'
	BEGIN
		USE SyncSamplesDb_Peer3
	END

--
-- Create two tables for the Sync Services peer synchronization samples.
--
EXEC('

CREATE SCHEMA Sales

--<snippetOCSv2_SQL_SyncSamplesSetupPeer_CustomerTable>
CREATE TABLE Sales.Customer(
	CustomerId uniqueidentifier NOT NULL PRIMARY KEY DEFAULT NEWID(),
	CustomerName nvarchar(100) NOT NULL,
	SalesPerson nvarchar(100) NOT NULL,
	CustomerType nvarchar(100) NOT NULL)
--</snippetOCSv2_SQL_SyncSamplesSetupPeer_CustomerTable>

CREATE TABLE Sales.CustomerContact(
	CustomerId uniqueidentifier NOT NULL,
	PhoneNumber nvarchar(100) NOT NULL,
	PhoneType nvarchar(100) NOT NULL,
	CONSTRAINT PK_CustomerContact PRIMARY KEY (CustomerId, PhoneType))
')

EXEC('
ALTER TABLE Sales.CustomerContact
ADD CONSTRAINT FK_CustomerContact_Customer FOREIGN KEY (CustomerId)
	REFERENCES Sales.Customer (CustomerId)
')

--
-- Create a table to store scope metadata, and insert a row for
-- the "Sales" scope. Scope is not related to the database schema name,
-- but in this example, they are both named "Sales".
--
EXEC('
--<snippetOCSv2_SQL_SyncSamplesSetupPeer_ScopeInfo>
CREATE TABLE Sales.ScopeInfo(
 scope_id uniqueidentifier DEFAULT NEWID(), 	
 scope_name nvarchar(100) NULL,
 scope_sync_knowledge varbinary(max) NULL,
	scope_tombstone_cleanup_knowledge varbinary(max) NULL,
	scope_timestamp timestamp)

SET NOCOUNT ON
INSERT INTO Sales.ScopeInfo(scope_name) VALUES (''Sales'')
SET NOCOUNT OFF
--</snippetOCSv2_SQL_SyncSamplesSetupPeer_ScopeInfo>
')

-- Create tracking tables for each base table.
--
EXEC('
--<snippetOCSv2_SQL_SyncSamplesSetupPeer_CustomerTrackingTable>
CREATE TABLE Sales.Customer_Tracking(
 CustomerId uniqueidentifier NOT NULL PRIMARY KEY,
 sync_row_is_tombstone int DEFAULT 0,
 sync_row_timestamp timestamp,
 sync_update_peer_key int DEFAULT 0,
 sync_update_peer_timestamp bigint,
 sync_create_peer_key int DEFAULT 0,
 sync_create_peer_timestamp bigint,
	last_change_datetime datetime DEFAULT GETDATE())
--</snippetOCSv2_SQL_SyncSamplesSetupPeer_CustomerTrackingTable>

CREATE TABLE Sales.CustomerContact_Tracking(
 CustomerId uniqueidentifier NOT NULL,
	PhoneType nvarchar(100) NOT NULL,
 sync_row_is_tombstone int DEFAULT 0,
 sync_row_timestamp timestamp,
 sync_update_peer_key int DEFAULT 0,
 sync_update_peer_timestamp bigint,
 sync_create_peer_key int DEFAULT 0,
 sync_create_peer_timestamp bigint,
	last_change_datetime datetime DEFAULT GETDATE()
	CONSTRAINT PK_CustomerContact_Tracking PRIMARY KEY (CustomerId, PhoneType))
') -- End of EXEC for table creation.

-- Create triggers to insert information into tracking tables.
--

-- Insert triggers
EXEC('
--<snippetOCSv2_SQL_SyncSamplesSetupPeer_CustomerInsertTrigger>
CREATE TRIGGER Customer_InsertTrigger ON Sales.Customer FOR INSERT
AS
	INSERT INTO Sales.Customer_Tracking(CustomerId, sync_update_peer_key,
 sync_update_peer_timestamp, sync_create_peer_key,
 sync_create_peer_timestamp)
	SELECT CustomerId, 0, @@DBTS + 1, 0, @@DBTS + 1
	FROM inserted		
--</snippetOCSv2_SQL_SyncSamplesSetupPeer_CustomerInsertTrigger>
')

EXEC('
CREATE TRIGGER CustomerContact_InsertTrigger ON Sales.CustomerContact FOR INSERT
AS
	INSERT INTO Sales.CustomerContact_Tracking(CustomerId, PhoneType, sync_update_peer_key,
 sync_update_peer_timestamp, sync_create_peer_key,
 sync_create_peer_timestamp)
	SELECT CustomerId, PhoneType, 0, @@DBTS + 1, 0, @@DBTS + 1
	FROM inserted		
')

-- Update triggers
EXEC('
--<snippetOCSv2_SQL_SyncSamplesSetupPeer_CustomerUpdateTrigger>
CREATE TRIGGER Customer_UpdateTrigger ON Sales.Customer FOR UPDATE
AS
 UPDATE t
	SET sync_update_peer_key = 0,
		sync_update_peer_timestamp = @@DBTS + 1,		
	 last_change_datetime = GETDATE()
	FROM Sales.Customer_Tracking t JOIN inserted i ON t.CustomerId = i.CustomerId 	
--</snippetOCSv2_SQL_SyncSamplesSetupPeer_CustomerUpdateTrigger>
')

EXEC('
CREATE TRIGGER CustomerContact_UpdateTrigger ON Sales.CustomerContact FOR UPDATE
AS
 UPDATE t
	SET sync_update_peer_key = 0,
		sync_update_peer_timestamp = @@DBTS + 1,		
	 last_change_datetime = GETDATE()
	FROM Sales.CustomerContact_Tracking t JOIN inserted i ON t.CustomerId = i.CustomerId
		AND t.PhoneType = i.PhoneType	
')

-- Delete triggers
EXEC('
--<snippetOCSv2_SQL_SyncSamplesSetupPeer_CustomerDeleteTrigger>
CREATE TRIGGER Customer_DeleteTrigger ON Sales.Customer FOR DELETE
AS
 UPDATE t
	SET sync_update_peer_key = 0,
		sync_update_peer_timestamp = @@DBTS + 1,
		sync_row_is_tombstone = 1,
	 last_change_datetime = GETDATE()
	FROM Sales.Customer_Tracking t JOIN deleted d ON t.CustomerId = d.CustomerId
--</snippetOCSv2_SQL_SyncSamplesSetupPeer_CustomerDeleteTrigger>
')

EXEC('
CREATE TRIGGER CustomerContact_DeleteTrigger ON Sales.CustomerContact FOR DELETE
AS
 UPDATE t
	SET sync_update_peer_key = 0,
		sync_update_peer_timestamp = @@DBTS + 1,
		sync_row_is_tombstone = 1,
	 last_change_datetime = GETDATE()
	FROM Sales.CustomerContact_Tracking t JOIN deleted d ON t.CustomerId = d.CustomerId
		AND t.PhoneType = d.PhoneType 	
')

--
-- Create stored procedures that SELECT and apply data and metadata changes.
--

-- Procedures to select incremental changes from each table.
EXEC('
--<snippetOCSv2_SQL_SyncSamplesSetupPeer_CustomerProcSelectChanges>
CREATE PROCEDURE Sales.sp_Customer_SelectChanges (
		@sync_min_timestamp bigint,		
		@sync_metadata_only int,
		@sync_initialize int)
AS

 --IF @sync_initialize = 0
	--BEGIN
		-- Perform additional logic if required.
	--END
	
	SELECT t.CustomerId,
			c.CustomerName,
			c.SalesPerson,
			c.CustomerType,	
			t.sync_row_is_tombstone,
			t.sync_row_timestamp, 	
			t.sync_update_peer_key,
			t.sync_update_peer_timestamp,
			t.sync_create_peer_key,
			t.sync_create_peer_timestamp
	FROM Customer c RIGHT JOIN Customer_Tracking t ON c.CustomerId = t.CustomerId
	WHERE t.sync_row_timestamp > @sync_min_timestamp		
	ORDER BY t.CustomerId ASC
--</snippetOCSv2_SQL_SyncSamplesSetupPeer_CustomerProcSelectChanges>
')

EXEC('
CREATE PROCEDURE Sales.sp_CustomerContact_SelectChanges (
		@sync_min_timestamp bigint,		
		@sync_metadata_only int,
		@sync_initialize int)		
AS

 --IF @sync_initialize = 0
	--BEGIN
		-- Perform additional logic if required.
	--END

 SELECT t.CustomerId,
			t.PhoneType,
 c.PhoneNumber,
 t.sync_row_is_tombstone,
			t.sync_row_timestamp,
 t.sync_update_peer_key,
 t.sync_update_peer_timestamp,
 t.sync_create_peer_key,
 t.sync_create_peer_timestamp
 FROM CustomerContact c RIGHT JOIN CustomerContact_Tracking t ON c.CustomerId = t.CustomerId
		AND c.PhoneType = t.PhoneType
 WHERE t.sync_row_timestamp > @sync_min_timestamp		
 ORDER BY t.CustomerId, t.PhoneType ASC
')

-- Procedures to apply incremental inserts to each base table
-- and metadata tracking table.
EXEC('
CREATE PROCEDURE Sales.sp_Customer_ApplyInsert (
 @CustomerId uniqueidentifier,
		@CustomerName nvarchar(100),
		@SalesPerson nvarchar(100),
		@CustomerType nvarchar(100),
		@sync_row_count int OUT)
AS

 IF NOT EXISTS (SELECT CustomerId FROM Customer_Tracking WHERE CustomerId = @CustomerId)
	 INSERT INTO Customer (CustomerId, CustomerName, SalesPerson, CustomerType)
	 VALUES (@CustomerId, @CustomerName, @SalesPerson, @CustomerType)
	 SET @sync_row_count = @@rowcount
')

EXEC('
CREATE PROCEDURE Sales.sp_Customer_InsertMetadata (
		@CustomerId uniqueidentifier,
		@sync_create_peer_key int ,
		@sync_create_peer_timestamp bigint,
		@sync_update_peer_key int ,
		@sync_update_peer_timestamp bigint,
		@sync_row_is_tombstone int,		
		@sync_row_count int OUT)
AS	
	INSERT INTO Customer_Tracking (CustomerId, sync_update_peer_key, sync_update_peer_timestamp,
 sync_create_peer_key, sync_create_peer_timestamp, sync_row_is_tombstone)
	VALUES (@CustomerId, @sync_update_peer_key, @sync_update_peer_timestamp,
 @sync_create_peer_key, @sync_create_peer_timestamp, @sync_row_is_tombstone) 			
	SET @sync_row_count = @@rowcount
')

EXEC('
CREATE PROCEDURE Sales.sp_CustomerContact_ApplyInsert (
 @CustomerId uniqueidentifier,
		@PhoneNumber nvarchar(100),
		@PhoneType nvarchar(100),
		@sync_row_count int OUT)
AS	
 IF NOT EXISTS (SELECT CustomerId, PhoneType FROM CustomerContact_Tracking
					WHERE CustomerId = @CustomerId AND PhoneType = @PhoneType)
	 INSERT INTO CustomerContact (CustomerId, PhoneNumber, PhoneType)
		VALUES (@CustomerId, @PhoneNumber, @PhoneType)
	 SET @sync_row_count = @@rowcount	
')

EXEC('
CREATE PROCEDURE Sales.sp_CustomerContact_InsertMetadata (
 @CustomerId uniqueidentifier,
		@PhoneType nvarchar(100),
		@sync_create_peer_key int,
		@sync_create_peer_timestamp bigint,
		@sync_update_peer_key int,
		@sync_update_peer_timestamp bigint,
		@sync_row_is_tombstone int,	
		@sync_row_count int OUT)
AS	
	INSERT INTO CustomerContact_Tracking (CustomerId, PhoneType, sync_update_peer_key, sync_update_peer_timestamp,
											sync_create_peer_key, sync_create_peer_timestamp, sync_row_is_tombstone)
	VALUES (@CustomerId, @PhoneType, @sync_update_peer_key, @sync_update_peer_timestamp,
			@sync_create_peer_key, @sync_create_peer_timestamp, @sync_row_is_tombstone) 			
	SET @sync_row_count = @@rowcount
')

-- Procedures to apply incremental updates to each base table
-- and metadata tracking table.
EXEC('
--<snippetOCSv2_SQL_SyncSamplesSetupPeer_CustomerProcApplyUpdate>
CREATE PROCEDURE Sales.sp_Customer_ApplyUpdate (
 @CustomerId uniqueidentifier,
		@CustomerName nvarchar(100),
		@SalesPerson nvarchar(100),
		@CustomerType nvarchar(100),
		@sync_min_timestamp bigint , 								
		@sync_row_count int OUT,
		@sync_force_write int)
AS		
	UPDATE c
	SET c.CustomerName = @CustomerName, c.SalesPerson = @SalesPerson, c.CustomerType = @CustomerType
	FROM Customer c JOIN Customer_Tracking t ON c.CustomerId = t.CustomerId
	WHERE ((t.sync_row_timestamp <= @sync_min_timestamp) OR @sync_force_write = 1)
		AND t.CustomerId = @CustomerId
	SET @sync_row_count = @@rowcount
--</snippetOCSv2_SQL_SyncSamplesSetupPeer_CustomerProcApplyUpdate> 	
')

EXEC('
--<snippetOCSv2_SQL_SyncSamplesSetupPeer_CustomerProcUpdateMetadata>
CREATE PROCEDURE Sales.sp_Customer_UpdateMetadata (
		@CustomerId uniqueidentifier,
		@sync_create_peer_key int,
		@sync_create_peer_timestamp bigint,					
		@sync_update_peer_key int,
		@sync_update_peer_timestamp timestamp,						
		@sync_row_timestamp timestamp,
		@sync_check_concurrency int,
		@sync_row_count int OUT)
AS			
	UPDATE Customer_Tracking SET
		sync_create_peer_key = @sync_create_peer_key,
		sync_create_peer_timestamp = @sync_create_peer_timestamp,
		sync_update_peer_key = @sync_update_peer_key,
		sync_update_peer_timestamp = @sync_update_peer_timestamp
	WHERE CustomerId = @CustomerId AND
		(@sync_check_concurrency = 0 OR sync_row_timestamp = @sync_row_timestamp)
	SET @sync_row_count = @@rowcount
--</snippetOCSv2_SQL_SyncSamplesSetupPeer_CustomerProcUpdateMetadata>
')

EXEC('
CREATE PROCEDURE Sales.sp_CustomerContact_ApplyUpdate (
 @CustomerId uniqueidentifier,
		@PhoneNumber nvarchar(100),
		@PhoneType nvarchar(100),
		@sync_min_timestamp bigint ,
		@sync_row_count int OUT,
		@sync_force_write int)
AS 	
	UPDATE c
	SET c.PhoneNumber = @PhoneNumber 	
	FROM CustomerContact c JOIN CustomerContact_Tracking t ON c.CustomerId = t.CustomerId
		AND c.PhoneType = t.PhoneType
	WHERE ((t.sync_row_timestamp <= @sync_min_timestamp) OR @sync_force_write = 1)
		AND t.CustomerId = @CustomerId	
		AND t.PhoneType = @PhoneType		
	SET @sync_row_count = @@rowcount
 	
')

EXEC('
CREATE PROCEDURE Sales.sp_CustomerContact_UpdateMetadata (
		@CustomerId uniqueidentifier,
		@PhoneType nvarchar(100),
		@sync_create_peer_key int ,
		@sync_create_peer_timestamp bigint,					
		@sync_update_peer_key int ,
		@sync_update_peer_timestamp timestamp,						
		@sync_row_timestamp timestamp,
		@sync_check_concurrency int,
		@sync_row_count int OUT)
AS			
	UPDATE CustomerContact_Tracking SET
		sync_create_peer_key = @sync_create_peer_key,
		sync_create_peer_timestamp = @sync_create_peer_timestamp,
		sync_update_peer_key = @sync_update_peer_key,
		sync_update_peer_timestamp = @sync_update_peer_timestamp
	WHERE CustomerId = @CustomerId AND PhoneType = @PhoneType
		AND (@sync_check_concurrency = 0 OR sync_row_timestamp = @sync_row_timestamp)
	SET @sync_row_count = @@rowcount
')

-- Procedures to apply incremental deletes to each base table
-- and metadata tracking table.
EXEC('
CREATE PROCEDURE Sales.sp_Customer_ApplyDelete(
	@CustomerId uniqueidentifier ,	
	@sync_min_timestamp bigint , 	 	
	@sync_row_count int OUT)	
AS
	DELETE c
	FROM Customer c JOIN Customer_Tracking t ON c.CustomerId = t.CustomerId
	WHERE t.sync_row_timestamp <= @sync_min_timestamp
		AND t.CustomerId = @CustomerId
	SET @sync_row_count = @@rowcount
')

EXEC('
CREATE PROCEDURE Sales.sp_Customer_DeleteMetadata(
 @CustomerId uniqueidentifier,			
	@sync_row_timestamp timestamp,	
	@sync_check_concurrency int,	
	@sync_row_count int OUT) 	
AS
	DELETE t
	FROM Customer_Tracking t
	WHERE t.CustomerId = @CustomerId
		AND (@sync_check_concurrency = 0 OR t.sync_row_timestamp = @sync_row_timestamp)
	SET @sync_row_count = @@rowcount 	
')

EXEC('
CREATE PROCEDURE Sales.sp_CustomerContact_ApplyDelete(
	@CustomerId uniqueidentifier,
	@PhoneType nvarchar(100),
	@sync_min_timestamp bigint,			
	@sync_row_count int OUT)	
AS	
	DELETE c
	FROM CustomerContact c JOIN Customer_details_Tracking t ON c.CustomerId = t.CustomerId
		AND c.PhoneType = t.PhoneType
	WHERE t.sync_row_timestamp <= @sync_min_timestamp
		AND t.CustomerId = @CustomerId
		AND t.PhoneType = @PhoneType
	SET @sync_row_count = @@rowcount
')

EXEC('
CREATE PROCEDURE Sales.sp_CustomerContact_DeleteMetadata(
 @CustomerId uniqueidentifier,
	@PhoneType nvarchar(100),			
	@sync_row_timestamp timestamp,	
 @sync_check_concurrency int,	
	@sync_row_count int OUT) 	
AS
	DELETE t
	FROM CustomerContact_Tracking t
	WHERE t.CustomerId = @CustomerId AND t.PhoneType = @PhoneType
		AND (@sync_check_concurrency = 0 OR t.sync_row_timestamp = @sync_row_timestamp)
	SET @sync_row_count = @@rowcount 	
')

-- Procedures to select conflicting rows from each base table and
-- metadata tracking table.
EXEC('
--<snippetOCSv2_SQL_SyncSamplesSetupPeer_CustomerProcSelectRow>
CREATE PROCEDURE Sales.sp_Customer_SelectRow
 @CustomerId uniqueidentifier
AS
 SELECT t.CustomerId,
 c.CustomerName,
		 c.SalesPerson,
		 c.CustomerType, 	 	
		 t.sync_row_timestamp,
	 t.sync_row_is_tombstone,
	 t.sync_update_peer_key,
	 t.sync_update_peer_timestamp,
	 t.sync_create_peer_key,
	 t.sync_create_peer_timestamp
	FROM Customer c RIGHT JOIN Customer_Tracking t ON c.CustomerId = t.CustomerId
	WHERE t.CustomerId = @CustomerId
--</snippetOCSv2_SQL_SyncSamplesSetupPeer_CustomerProcSelectRow>
')

EXEC('
CREATE PROCEDURE Sales.sp_CustomerContact_SelectRow
 @CustomerId uniqueidentifier,
		@PhoneType nvarchar(100)
AS

	SELECT t.CustomerId,
	 t.PhoneType,
	 c.PhoneNumber, 	
	 t.sync_row_is_tombstone,
	 t.sync_row_timestamp,
	 t.sync_update_peer_key,
	 t.sync_update_peer_timestamp,
	 t.sync_create_peer_key,
	 t.sync_create_peer_timestamp
	FROM CustomerContact c RIGHT JOIN CustomerContact_Tracking t ON c.CustomerId = t.CustomerId
		AND c.PhoneType = t.PhoneType
	WHERE t.PhoneType = @PhoneType
')

-- Procedures to select metadata that can be cleaned up from each
-- metadata tracking table.
EXEC('
--<snippetOCSv2_SQL_SyncSamplesSetupPeer_CustomerProcSelectMetadata>
CREATE PROCEDURE Sales.sp_Customer_SelectMetadata
	@metadata_aging_in_hours int
AS
	IF @metadata_aging_in_hours = -1
		BEGIN
			SELECT CustomerId,
				 sync_row_timestamp, 	
				 sync_update_peer_key,
				 sync_update_peer_timestamp,
				 sync_create_peer_key,
				 sync_create_peer_timestamp
			FROM Customer_Tracking
			WHERE sync_row_is_tombstone = 1
		END
	
	ELSE
		BEGIN
			SELECT CustomerId,
				 sync_row_timestamp, 	
				 sync_update_peer_key,
				 sync_update_peer_timestamp,
				 sync_create_peer_key,
				 sync_create_peer_timestamp
			FROM Customer_Tracking
			WHERE sync_row_is_tombstone = 1 AND
			DATEDIFF(hh, last_change_datetime, GETDATE()) > @metadata_aging_in_hours
		END
--</snippetOCSv2_SQL_SyncSamplesSetupPeer_CustomerProcSelectMetadata>
')

EXEC('
CREATE PROCEDURE Sales.sp_CustomerContact_SelectMetadata
	@metadata_aging_in_hours int
AS
	IF @metadata_aging_in_hours = -1
		BEGIN
			SELECT CustomerId,
				 sync_row_timestamp, 	
				 sync_update_peer_key,
				 sync_update_peer_timestamp,
				 sync_create_peer_key,
				 sync_create_peer_timestamp
			FROM CustomerContact_Tracking
			WHERE sync_row_is_tombstone = 1
		END
	
	ELSE
		BEGIN
			SELECT CustomerId,
				 sync_row_timestamp, 	
				 sync_update_peer_key,
				 sync_update_peer_timestamp,
				 sync_create_peer_key,
				 sync_create_peer_timestamp
			FROM CustomerContact_Tracking
			WHERE sync_row_is_tombstone = 1 AND
			DATEDIFF(hh, last_change_datetime, GETDATE()) > @metadata_aging_in_hours
		END
')

-- Insert test data.
--
--
-- Wrap the inserts in a procedure so that each snippet
-- can call the procedure to reset the database after
-- the snippet completes. The procedure for the first
-- peer includes inserts into the base tables. The other
-- peers receive inserts during the first synchronization
-- session.
IF @CurrentDbName <> 'SyncSamplesDb_Peer1'
BEGIN

EXEC('
CREATE PROCEDURE usp_ResetPeerData

AS
	SET NOCOUNT ON

	DELETE FROM Sales.CustomerContact_Tracking
	DELETE FROM Sales.Customer_Tracking
	DELETE FROM Sales.CustomerContact
	DELETE FROM Sales.Customer
	
	SET NOCOUNT OFF
')
END

ELSE
BEGIN

EXEC('
CREATE PROCEDURE usp_ResetPeerData

AS
	SET NOCOUNT ON

	DELETE FROM Sales.CustomerContact_Tracking
	DELETE FROM Sales.Customer_Tracking
	DELETE FROM Sales.CustomerContact
	DELETE FROM Sales.Customer

	--INSERT INTO Customer.
	INSERT INTO Sales.Customer (CustomerName, SalesPerson, CustomerType) VALUES (N''Aerobic Exercise Company'', N''James Bailey'', N''Wholesale'')
	INSERT INTO Sales.Customer (CustomerName, SalesPerson, CustomerType) VALUES (N''Exemplary Cycles'', N''James Bailey'', N''Retail'')
	INSERT INTO Sales.Customer (CustomerName, SalesPerson, CustomerType) VALUES (N''Tandem Bicycle Store'', N''Brenda Diaz'', N''Wholesale'')
	INSERT INTO Sales.Customer (CustomerName, SalesPerson, CustomerType) VALUES (N''Rural Cycle Emporium'', N''Brenda Diaz'', N''Retail'')
	INSERT INTO Sales.Customer (CustomerName, SalesPerson, CustomerType) VALUES (N''Sharp Bikes'', N''Brenda Diaz'', N''Retail'')

	--Declare variables that are used in subsequent inserts.
	DECLARE @CustomerId uniqueidentifier
	DECLARE @InsertString nvarchar(1024)

	--INSERT INTO CustomerContact.
	SELECT @CustomerId = CustomerId FROM Sales.Customer WHERE CustomerName = N''Exemplary Cycles''
	SET @InsertString = ''INSERT INTO Sales.CustomerContact (CustomerId, PhoneNumber, PhoneType) VALUES ('''''' + CAST(@CustomerId AS nvarchar(38)) + '''''', ''''959-555-0151'''', ''''Business'''')''
	EXECUTE sp_executesql @InsertString

	SELECT @CustomerId = CustomerId FROM Sales.Customer WHERE CustomerName = N''Tandem Bicycle Store''
	SET @InsertString = ''INSERT INTO Sales.CustomerContact (CustomerId, PhoneNumber, PhoneType) VALUES ('''''' + CAST(@CustomerId AS nvarchar(38)) + '''''', ''''107-555-0138'''', ''''Business'''')''
	EXECUTE sp_executesql @InsertString

	SELECT @CustomerId = CustomerId FROM Sales.Customer WHERE CustomerName = N''Rural Cycle Emporium''
	SET @InsertString = ''INSERT INTO Sales.CustomerContact (CustomerId, PhoneNumber, PhoneType) VALUES ('''''' + CAST(@CustomerId AS nvarchar(38)) + '''''', ''''158-555-0142'''', ''''Business'''')''
	EXECUTE sp_executesql @InsertString

	SELECT @CustomerId = CustomerId FROM Sales.Customer WHERE CustomerName = N''Rural Cycle Emporium''
	SET @InsertString = ''INSERT INTO Sales.CustomerContact (CustomerId, PhoneNumber, PhoneType) VALUES ('''''' + CAST(@CustomerId AS nvarchar(38)) + '''''', ''''453-555-0167'''', ''''Mobile'''')''
	EXECUTE sp_executesql @InsertString

	SET NOCOUNT OFF
') -- End of usp_ResetPeerData
END

EXEC usp_ResetPeerData

SET @DbNames = SUBSTRING(@DbNames, 0, LEN(@DbNames) - 20)

END -- End of loop to create database objects.

[bookmark: _Toc210113833][bookmark: _Toc210728699]
Web Development
This section contains the following walkthroughs.
· Walkthrough: Targeting multiple versions of ASP.Net
· Walkthrough: HTML Code Snippets
· Walkthrough: Transforming Web.Config for Deployment
· Walkthrough: Packaging & Deploying a Web Application which uses VS Development Web Server
· Walkthrough: Packaging & Deploying a Web Application which uses IIS

[bookmark: _Walkthrough:_Targeting_multiple][bookmark: _Toc210728700]Walkthrough: Targeting multiple versions of ASP.Net
Overall Goals
This walkthrough covers the user experience converting an ASP.Net 3.5 web site to ASP.Net 4.0.
While the Visual Studio 2010 CTP enables developers to easily target ASP.Net 4.0 it only provides limited multi-targeting support for previous frameworks. This limitation will be removed in future builds.
Prerequisites
 Before starting this walkthrough, please understand the following pre-requisites:
· A website or web application project created in Visual Studio 2008
· In the Visual Studio 2010 CTP, some of the functionalities of WAPs as well as Web Sites may not work correctly for .NET Frameworks 2.0, 3.0 & 3.5 so we encourage you to upgrade your existing Web Projects to .NET 4.0 before proceeding. Please do make a copy of your Web Project before upgrading to .NET 4.0. In this walkthrough we will assume that you have upgraded your existing web project to a .NET 4.0 WAP. Before final release of Visual Studio 10 .NET Frameworks 2.0 till 4.0 will be fully supported.
· As we are hoping to use IIS based WAPs in this walkthrough, on the PDC CTP, we’ve pre-set the “Default Web Site” to use an application pool whose .NET Framework version is .NET 4.0. If you have other projects which want to use different .NET Framework version then you will need to update the application pool of “Default Web Site” (or other websites that you want to re-target) to an application pool that matches the correct version (2.0 application pools should be used for WAPs targeting .NET 3.5 or below).
Walkthrough
Upgrading from 3.5 to 4.0
If you’re running the VPC provided with the PDC CTP then the app pool for the “Default Web Site” in IIS has already been updated for .NET 4.0. If you’re running the Dev10 CTP on a different machine or for a different IIS-based web site, you will need to manually update the app pool as listed in the prerequisites above. If your project is using the ASP.Net development server provided with Visual Studio then no other changes are required.
The upgrade process is the same for both website and web application projects.
Warning: Once upgraded to Visual Studio 10 the project and solution will not be editable by Visual Studio 2008.
1. Open the Solution containing the Visual Studio 2008 ASP.Net 3.5 web project.
If you open the website directly without the solution file then the Visual Studio Conversion Wizard will be skipped and you’ll be presented with the website targeting dialog shown below after the wizard sequence below.
You will now be presented with the starting page of the Visual Studio Conversion Wizard as show below:
[image:]
2.	After clicking Next to proceed, you will have the opportunity to backup your solution and project. It is highly recommended that you select “Yes” and create a backup before proceeding.
[image:]
3.	After making a backup of your solution and project files the next step will detail some of the changes the wizard will apply to the solution and project files.
[image:]
4.	After clicking Finish, the wizard will upgrade the solution and project files for Visual Studio 2010. During this process if a website project is detected targeting ASP.Net 2.0, 3.0 or 3.5 you will be presented with the following dialog.
[image:]
Clicking Yes on this dialog will update web.config for ASP.Net 4.0. Clicking No will leave the target framework and web.config unchanged.
In the CTP build, Web Application Projects will always update web.config for ASP.Net 4.0 after the Visual Studio Conversion Wizard.
Warning: Targeting ASP.Net 2.0, 3.0 or 3.5 may result in some features within VS not working as expected. In the Visual Studio 2010 CTP is recommended that users upgrade to ASP.Net 4.0 by selecting “Yes” in the above dialog.
Several changes will be made to the web.config. Listed below are a few examples:
· Updating assembly references are updated for 4.0
	Example:
<! <add assembly="System.Core, Version=3.5.0.0, Culture=neutral, …
 !> 	 <add assembly="System.Core, Version=4.0.0.0, Culture=neutral, …
…

· Updating binding redirects for 4.0
	Example:
<! <bindingRedirect oldVersion="1.0.0.0-1.1.0.0" newVersion="3.5.0.0"/>
 !> 	<bindingRedirect oldVersion="1.0.0.0-3.5.0.0" newVersion="4.0.0.0"/>

· Updating the complier for 4.0
	Example:
<! <compiler language="c#;cs;csharp" extension=".cs" warningLevel="4"
 <! type="Microsoft.CSharp.CSharpCodeProvider, System, Version=2.0.0.0, …
 <! <providerOption name="CompilerVersion" value="v3.5"/>
 !> <compiler language="c#;cs;csharp" extension=".cs" warningLevel="4"
 !> type="Microsoft.CSharp.CSharpCodeProvider,System, Version=4.0.0.0, …
 !> <providerOption name="CompilerVersion" value="v4.0"/>
…

A full list of changes can be viewed by running windiff on the backup copy of web.config and the newly updated version.
Retargeting from 4.0 to 3.5
Because the Visual Studio 2010 CTP has only limited support for frameworks prior to 4.0, if you change the target framework from 4.0 you will get a warning dialog.
To change the target framework for website projects, select project properties (Shift + F4), then “Build” settings. You can also select project properties by right-clicking on the project node in solution explorer and selecting “properties.”
Available target frameworks are shown below:
[image:]
If you retarget a website project from 4.0 you will get this warning dialog:
[image:]
For web application projects you will get the following dialog:
[image:]
This warning and limitation will be removed in future builds.
If you convert a Visual Studio 2008 web application project to Visual Studio 10 and then retargeted for 3.5 or below, you may see an older version of this dialog.

[bookmark: _Walkthrough:_HTML_Code][bookmark: _Toc210728701]Walkthrough: HTML Code Snippets
In this walkthrough, we will leverage the new HTML code snippets to accelerate the code creation process. Though the examples highlight HTML, this feature also works for JavaScript, C#, Visual Basic, and XML.
Tasks illustrated in this walkthrough include:
· How to insert a snippet.
· How to add your own snippet.
 Prerequisites
This walkthrough is written for the Visual Studio 2010 CTP.
Insert a snippet
Many pre-defined snippets are included in Visual Studio. They can be browsed and invoked via the normal IntelliSense typing workflow.
1.	Invoke the completion list. This can be done by typing “<” or CTRL + J.
[image: s1.png]
2.	Observe the items in the IntelliSense list:
a.	[image: s2a.png] A completion entry that is also a snippet keyword.
b.	[image: s2b.png] A snippet keyword.
c.	[image: s2c.png] A completion entry, that is not a snippet keyword.
3.	Select "button", then TAB, TAB to insert the snippet.
[image: s3.png]
4.	Key values will be highlighted. Type your own key values. If there are multiple highlighted fields, TAB to cycle between them.
5.	ENTER to commit the snippet. The highlighted fields will disappear.
[image: s4.png]
Alternately the snippet picker can be invoked via CTRL + K, CTRL + X. This may be a faster method in some cases.
	[image: s5.png]
Note: this list is organized by snippet title rather than shortcut.
	[image: s5b.png]
Add your own snippet
Code Snippets are stored as XML files in a well-known directory. Define a new snippet by duplicating an existing one then tweaking the contents, or by creating one from scratch as follows:
1.	Create a new XML file in Visual Studio.
2.	Create the contents according to the Code Snippet XML Schema. Example:
<CodeSnippet Format="1.1.0" xmlns="http://schemas.microsoft.com/VisualStudio/2005/CodeSnippet">
 <Header>
 <Title>My Custom Control</Title>
 <Author>Microsoft Corporation</Author>
 <Shortcut>mycontrol</Shortcut>
 <Description>Markup snippet for my custom control</Description>
 <SnippetTypes>
 <SnippetType>Expansion</SnippetType>
 </SnippetTypes>
 </Header>
 <Snippet>
 <Code Language="html"><![CDATA[<asp:mycontrol runat="server" />end]]></Code>
 </Snippet>
</CodeSnippet>

To create the Code Snippet XML Schema, use a snippet! CTRL + K, CTRL + X to invoke the snippet picker, then choose the "Snippet" snippet. The most important fields to pick are:
a.	Title – The text to be displayed in the snippet picker. In the example, this is the “My Custom Control” value.
b.	Shortcut – The name to be used in the completion list. In the example, this is the “mycontrol” value.
c.	Code – The snippet payload is represented as text inside the CDATA section.
3.	Rename the file extension to ".snippet".
4.	Move the snippet to:
C:\Users\Username\Documents\Visual Studio 10\Code Snippets\Visual Web Developer\My HTML Snippets

5.	Alternatively, you can add it using the Code Snippets Manager dialog via “Add…”. This dialog can be found under the “Tools” top-level menu.
[image: s6.png]
6.	Your snippets shortcut will automatically appear in the IntelliSense completion list. . You do not need to restart Visual Studio.
Additional information such as the detailed Code Snippet XML Schema and how to define replaceable fields can be found here: http://msdn.microsoft.com/en-us/library/ms165392(VS.80).aspx. Note: If you are already familiar with VS2005 C# and Visual Basic Code Snippets (also in VS2008), this technology is an extension of that.
[bookmark: _Walkthrough:_Transforming_Web.Confi][bookmark: _Toc210728702]Walkthrough: Transforming Web.Config for Deployment
Overview
In this walkthrough, we will try to understand how to transform your web.config file to match your destination server during deployment. Usually web applications go through a chain of server deployments before they are deployed to the production environment. Some of these environments can be Developer box (Debug), QA Server, Staging/Pre-Production, Production (Release). While transitioning between these environments, various settings of the web application (which reside in the web.config file) change. Some of these settings can be items like application settings, connection strings, debug flags, web services end points etc.
Visual Studio 2010’s new web.config transformation model allows you to modify your web.config file in an automated fashion during deployment of your applications to various server environments. Visual Studio 10’s Web.Config Transformation is one of the new features that assist you with Web Deployment as a whole. For other related feature areas, please check the “Related Web Deployment Walkthroughs” section of this document.
To help VS Team Build based deployments, Web.Config transformation is implemented as an MSBuild task behind the scene.
Tasks illustrated in this walkthrough include:
1.	Creating a “Staging” Configuration on your developer box.
2.	Adding a “Staging “Web.Config Transform file to your project.
3.	Writing simple transforms to change developer box connection string settings into “Staging” environment settings.
4.	Generating a new transformed web.config file for “Staging” environment from command lin.e
5.	Generating a new transformed web.config file for “Staging” environment from VS UI.
6.	Understanding various available web.config Transforms and Locators.
7.	Using Web.config transformation toolset for config files in sub-folders within the project.
Prerequisites
Before starting this walkthrough, please understand the following pre-requisites:
· Web Config Transformation technology is currently supported only for Web Application Projects (WAP). Web Site Projects are not currently supported. If you would like to try this technology on an existing Web Site Project ,you will first have to convert your Web Site to a WAP. The instructions on how to do this can be found at: http://msdn.microsoft.com/en-us/library/aa983476(VS.80).aspx
· This prerequisite applies ONLY to users who intend to use IIS as their web server on their developer computer; if you intend to use Visual Studio Development Web Server then please skip this section. You will need Administrative privileges on the machine to complete the following steps. IIS based WAP can be created by going to the Web Tab in the Property Pages of a WAP and changing the development server from Visual Studio Development Server to Local IIS. This can be done as shown below:
[image:]
· In order for “Create Virtual Directory” button above to work correctly, you will need to have IIS Metabase Compatibility Layer installed on your computer. You can do so by going to Control Panel “Turn Windows Features On/Off” and enabling the IIS Metabase Compatibility section under IIS.
· Also note that you will need to open Visual Studio in an Administrator mode in order for “Create Virtual Directory” to function correctly.
· As we are hoping to use IIS based WAPs in this walkthrough, we’ve pre-set the “Default Web Site” to use an application pool which.NET Framework version is .NET 4.0. If you have other projects which want to use different .NET Framework version, you will have to select “Default Web Site” application pool to an application pool that matches the correct version.
Tasks
Creating a “Staging” Configuration on your developer box
For this walkthrough we have taken “My Web Pages Starter Kit” from CodePlex and first converted it into a WAP. Eventually, the Starter Kit WAP was upgraded to a Visual Studio 10 WAP. After the upgrade is complete, the new Visual Studio 10 with “My Web Pages Starter Kit” loaded looks as below:
[image:]
You do not need to use the starter kit, you can try out this feature on your existing projects by converting them to Visual Studio 10 WAPs or even creating new Visual Studio 10 WAPs.
Debug and Release build configurations are available by default within Visual Studio but if you would like to add more build configurations (for various server environments like “Dev”, “QA”, “Staging”, “Production” etc then you can do so by going to the Build Configuration Manager as shown below:
[image:]
Let us go ahead and add “Staging” configuration to the Build Configuration List and make our Starterkit project target the “Staging” as its active configuration. We can do this as shown in the steps below.
1.	Create a new Staging Configuration.
 [image:]
2.	Change the Active Configuration of the current project to “Staging” configuration.
[image:]
Adding a “Staging “Web.Config Transform file to your project
One of the goals while designing web.config transformation was to make sure that the original runtime web.config file does not need to be modified to ensure that there would be no performance impacts and also to make sure that the design time syntax is not mixed with runtime syntax. To support this goal, the concept of Configuration specific web.config files was introduced.
These web.config files follow a naming convention of web.configuration.config. For example the web.config files for various default Visual Studio configurations will look like:
· Debug Web.Debug.Config
· Release Web.Release.Config
Any new WAPs created in Visual Studio 10 will by default have the above two config files added to the project. If we add new configurations (e.g. “Staging”) or if we upgrade pre- Visual Studio 10 projects to Visual Studio 10, then we will have to issue a command to Visual Studio to generate the Configuration specific Transform files as needed.
The Configuration specific web.config files are nested under the original web.config file.
1.	To add configuration specific transform files let us right-click the original web.config file now. By doing so we will see a new context menu command “Add Config Transforms” within Visual Studio as shown below:
[image:]
2.	Click “Add Config Transforms” command. Visual Studio will automatically generate the transform web.config files under the original web.config file as shown below:
[image:]
For Visual Basic Web Application Projects, the web.configuration.config files will not be visible until you enable the hidden file views as shown below:
[image:]
Visual Studio will detect the Configurations that do not have the transform files associated with them and will generate one transform file per configuration. It will not overwrite an existing transform file and if you do not want a particular configuration transform file, then feel free to delete it.
These transform files in essence inform Visual Studio about web.config nodes, sections, attributes which need to be added, deleted or modified for deployment purposes. The transform files are design time files only and will not be deployed or packaged by Visual Studio. If you are going to XCopy deploy your web application, you may want to explicitly exclude these files from deployment just like you do with project (.csproj/.vbproj) or user (.user) files; although do note that these files should not be harmful even if deployed as runtime does not use them in any fashion.
Writing simple transforms to change developer box connection string settings into “Staging” environment settings
Web.Config Transformation Engine is a simple XML Transformation Engine which takes a source file (your project’s original web.config file) and a transform file (e.g. web.staging.config) and produces an output file (staging environment’s web.config).
The Transform file (e.g. web.staging.config) needs to have XML Document Transform namespace registered at the top as shown below:
<?xml version="1.0"?>
<configuration xmlns:xdt="http://schemas.microsoft.com/XML-Document-Transform">

</configuration>
Also note that the transform web.config file needs to be a well formed XML.
Inside the XML-Document-Transform namespace two new attributes are defined. These attributes are important to understand as they drive the Transformation Engine.
· Transform – This attribute inside the web.Staging.config informs the Transformation engine of way to modify the web.config file for specific configuration (i.e. staging). Some examples of Transforms are:
· Replacing a node
· Inserting a node
· Delete a node
· Removing an Attribute
· Setting an Attributing etc
· Locator – This attribute inside the web.staging.config helps the Transformation engine to pin-point the web.config node that the transform from web.staging.config should be applied to. Some examples of Locator are:
· Match on value of a node’s attribute
· Exact XPath of where to find a node
· A condition match to find a node
Based on the above basic understanding let us try to transform connection string from original web.config file to match Staging environment
Let us examine the original web.config file and identify the items to replace.
1.	Original Web Config file’s connection string section looks as below:
<?xml version="1.0" encoding="UTF-8"?>
<configuration>

 <connectionStrings>
 <add name="personalDB"
connectionString="Server=DevBox; Database=personal; User Id=admin; password=P@ssw0rd" providerName="System.Data.SqlClient" />
 <add name="professionalDB"
connectionString="Server=DevBox; Database=professional; User Id=admin; password=P@ssw0rd" providerName="System.Data.SqlClient" />
 </connectionStrings>
 ...
 <system.web>
 <httpRuntime maxRequestLength="10240" />

 <compilation debug="true" batch="true">
 <assemblies>
<add assembly="System.Design, Version=2.0.0.0, Culture=neutral, PublicKeyToken=B03F5F7F11D50A3A" />
 </assemblies>
 </compilation>
 </system.web>
 ...
 ...
 ...
</configuration>
2.	Let us assume that we would like to make the following changes to web.config file when moving to the staging environment.
· For “personalDB” we would like to change the connectionString to reflect Server=StagingBox, UserId=admin, password=StagingPersonalPassword”
· For “professionalDB” we would like to change the connectionString to reflect Server=StagingBox, UserId=professional, password=StagingProfessionalPassword”
Note: You should encrypt the connection string section of your web.config file to protect your database connections. For more information, see Overview of Protected Configuration.
3.	To make the above change happen we will have to open web.Staging.Config file and write the below piece of code
<?xml version="1.0"?>

<configuration xmlns:xdt="http://schemas.microsoft.com/XML-Document-Transform">

 <connectionStrings>
 <add name="personalDB"
connectionString="Server=StagingBox; Database=personal; User Id=admin; password=StagingPersonalPassword"
providerName="System.Data.SqlClient" xdt:Transform="Replace" xdt:Locator="Match(name)" />
 <add name="professionalDB"
connectionString="Server=StagingBox; Database=professional; User Id=professional; password=StagingProfessionalPassword"
providerName="System.Data.SqlClient" xdt:Transform="Replace" xdt:Locator="Match(name)"/>
 </connectionStrings>

</configuration>
4.	The syntax in web.staging.config (above) uses the Transform and Locator attributes from the xdt namespace which we have discussed earlier. If we analyze the connection string node syntax, we can notice that the Transform used here is “Replace,” which is instructing the Transformation Engine to Replace the entire node.
5.	Further if we notice the Locator used here is “Match” which is informing Transformation engine that among all the “configuration/connectionStrings/add” nodes that are found, pick up the node whose name attribute matches with the name attribute of <add> node in web.Staging.config. Notice the green highlighting which clarifies the concept. Without the xdt:locator=”Match”, the Replace transform will replace the first <add> node it finds under connectionStrings (i.e. in the above example the <add name=PersonalDB …./> will get replaced twice by two different Replace transforms)
6.	Also if you notice web.Staging.config does not contain anything else but the connectionStrings section (i.e. it does not have <system.web> and various other sections that web.config file usually has, this is because of the fact that the Transformation Engine does not require a complete web.config file in web.staging.config. It does the merging for you thus saving you duplication of all the rest of the sections in web.config file.
7.	If you do not mind replicating the entire web.config file in web.staging.config then you can certainly do so by copying web.config content into web.staging.config and change the relevant nodes inside web.staging.config. In such a situation you will just have to put xdt:Transform="Replace" attribute on the topmost node (i.e. configuration) of web.staging.config. You will not need xdt:Locator attribute at all as you are replacing your entire web.config file with web.staging.config without Matching anything.
8.	So far we have seen one Transform (i.e. Replace) and one Locator (i.e. Match), we will see various other Transforms and Locators further in the walkthrough but first let us understand how we can produce the Transformed web.config file for the Staging environment after using original web.config and web.staging.config.
Generating a new transformed web.config file for “Staging” environment from command line
1.	Open Visual Studio Command prompt by going to Start Program Files Visual Studio v10.0 Visual Studio tools Visual Studio 10.0 Command Prompt as shown below:
[image:]
2.	Type “MSBuild “Path to Application project file (.csproj/.vbproj) ” /t:TransformWebConfig /p:Configuration=Staging" and hit enter as shown below:
[image:]
3.	If the transformation is successful the web.config for the “Staging” configuration will be stored under objStaging folder under your project, it can be accessed by un-hiding it as follows:
[image:]
a.	In the solution explorer click the button to show hidden files.
b.	Open the Obj folder.
c.	Navigate to your Active configuration (in our current case it is “Staging”).
d.	You can find the transformed web.config there.
4.	Verify that the new staging web.config file generated has the changed connection string section.
Generating a new transformed web.config file for “Staging” environment from VS UI
1.	Go to the Project Properties by right-clicking on your project and clicking “Properties”.
[image:]
2.	In the Project Properties navigate to the “Publish” tab and ensure that the Active Configuration on the top of the Publish tab is set to “Staging” as shown below.
[image:]
3.	At the bottom of the Publish tab you can notice that there are “Package Settings”, as shown in the image below. Uncheck the “Create MSDeploy package as a ZIP file” option. This will ensure that your web package is not a .zip file but rather just a folder structure which contains your transformed web.config file.
[image:]
4.	Also note the package Location in the image above. This is where the web Package which contains your WAPs deployable image (with the modified web.config file) will be placed.
5.	Click “Create Package” button to transform your web.config file and insert it into the package. If you open the package folder and navigate to the folder representing the root of your Web site then you can find the transformed web.config file inside as shown below:
[image:]
You can read more about web packaging in the walkthroughs mentioned in “Related Web Deployment Walkthroughs” section below.
6.	If you do not want to package your Web site but would just like to transform your web.config file from the VS UI, then you can still hit “Create Package” and upon successful completion of the command you can find the transformed web config file in the ObjStaging (configuration) folder of your project as explained in section 4.3.
Note: Web.Config transformation will not produce new web.config file in case web.configuration.config file is un-altered. This is to ensure that performance is not impacted during incremental packaging scenarios.
Understanding various available web.config Transforms and Locators
[bookmark: _Toc199970661]xdt:Locators
The inbuilt xdt:Locators are discussed below.
	#
	Locator
	Syntax Example
	Comments

	1
	Match
	<connectionStrings>
 <add name="Northwind" connectionString="connectionString goes here" providerName="System.Data.SqlClient" xdt:Transform="Replace" xdt:Locator="Match(name)" />
 </connectionStrings>
	In this syntax, the Replace transform will occur only when the name Northwind matches in the list of connection strings in the source web.config. The resultant XPath generated here is “/configuration/connectionStrings/add[@name='Northwind']”
Do note that Match Locator can take multiple attributeNames as parameters e.g. Match(name, providerName)

	2
	Condition
	<connectionStrings>
 <add name="Northwind" connectionString="connectionString goes here" providerName="System.Data.SqlClient" xdt:Transform="Replace" xdt:Locator="Condition(@name=’Northwind or @providerName=’ System.Data.SqlClient’)" />
</connectionStrings>
	Condition Locator will create an XPath predicate which will be appended to current element XPath.
The XPath generated here is
“/configuration/connectionStrings/add[@name='Northwind or @providerName=’ System.Data.SqlClient’]”
This XPath is then used to search for the correct node in the source web.config file

	3
	XPath
	<location path="c:\MySite\Admin" >
 <system.web xdt:Transform="RemoveAll" xdt:Locator="XPath(//system.web)">
 ...
 </system.web>
</location>
	This Locator will support complicated XPath expressions to identify the source web.config nodes. In the syntax example we can see that the XPath provided will allow user to replace system.web section no matter where it is located inside the web.config (i.e. all the system.web sections under any location tag will be removed.)

[bookmark: _Toc199970660]xdt:Transform
	Sr.No.
	Transform
	Synatx in transformXML (e.g. web.release.config)
	Comments

	1
	Replace
	<assemblies xdt:Transform="Replace">
	<add assembly="System.Core, Version=3.5.0.0, Culture=neutral, PublicKeyToken=B77A5C561934E089" />
</assemblies>		
	Completely replaces the first matching element along with all of its children from the destination web.config (e.g. staging environment’s web.config file). Do note that transforms do not modify your source web.config file.

	2
	Remove
	<assemblies xdt:Transform="Remove"></assemblies>
	Removes the first matching element along with all of its children

	3
	RemoveAll
	<connectionStrings>
 <add xdt:Transform="RemoveAll"/>
</connectionStrings>
	Removes all the matching elements from the destination’s web.config (e.g. staging environment’s web.config file).

	4
	Insert
	<authorization>
 <deny users="*" xdt:Transform="Insert"/>
</authorization>
	Inserts the element defined in web.staging.config at the bottom of the list of all the siblings in the destination web.config (e.g. staging environment’s web.config file).

	5
	SetAttributes
	<compilation batch="false" xdt:Transform="SetAttributes(batch)"></compilation>
	Takes the value of the specified attributes from the web.staging.config and sets the attributes of the matching element in the destination web.config (e.g. staging environment’s web.config file). This Transform takes a comma separated list of attributes which need to be set. If no attributes are given to SetAttributes transform then it assumes that you would like to Set all the attributes present on the corresponding node in web.staging.config

	6
	RemoveAttributes
	<compilation xdt:Transform="RemoveAttributes(debug,batch)">
</compilation>
	Removes the specified attributes from the destination web.config (i.e. staging environment’s web.config file). The syntax example shows how multiple attributes can be removed.

	7
	InsertAfter (XPath)
	<authorization>
 <deny users="Vishal" xdt:Transform="InsertAfter(/configuration/system.web/authorization/ allow[@roles='Admins']") />
</authorization>
	Inserts the element defined in the web.staging.config exactly after the element defined by the specified XPath passed to “InsertAfter()” transform.
In the syntax example the element
<deny users="Vishal" /> will be exactly inserted after the element <allow roles="Admins" /> in the destinationXML.

	8
	InsertBefore (XPath)
	<authorization>
 <allow roles=" Admins" xdt:Transform="InsertBefore(/configuration/system.web/authorization/ deny[@users='*'])" />
</authorization>
	Inserts the element defined in the web.staging.config exactly before the element defined by the specified XPath passed to “InsertBefore()” transform.
In the syntax example the element <allow roles="Admins" /> will be exactly inserted before the element <deny users="*" /> in the destinationXML.

Some advanced points to note:
· If the Transformation Engine does not find a xdt:Transform attribute specified on a node in web.staging.config file then that node is ignored for Transformation and the Transformation engine moves ahead traversing the rest of the web.staging.config.
· A xdt:Transform attribute on a parent can very easily impact child elements eve if there is no Transform specified for child e.g. If xdt:Locator=”Replace” is put on <system.web> then everything underneath <system.web> node will be replaced with the content from web.staging.config
· It is completely valid to place xdt:Locators attributes on arbitrary nodes inside web.staging.config just for filtering purposes. Xdt:Locator does not need to be accompanied with xdt:Transform attribute.
Using Web.config transformation toolset for config files in sub-folders within the project
All of the above discussion directly applies to any web.config file present in sub folders of your project. You can add transform files within sub-folders and use the same packaging functionality mentioned in all of the above steps to create transformed web.config files for web.config files specific to the sub folders within your project.
[bookmark: _Toc209110329]Related Web Deployment Walkthroughs
· Sometimes you are using Visual Studio inbuilt web server for your development but would want to deploy this Web to IIS Server. In this situation it would be worth reading the Walkthrough titled “Packaging & Deploying a Web Application which uses VS Development Web Server”
· You may have a complicated IIS web and bunch of IIS settings set up in it including but not limited to Default Documents, Error Pages, etc. Eventually you may want to deploy this web to a IIS server. If you are likely to face such a situation then it would be worth reading the Visual Studio 10 Walkthrough titled “Packaging & Deploying a Web Application which uses IIS”
Provide Feedback
We would love hear your feedback about the new web deployment features in Visual Studio 10. You can directly send an email to Vishal.Joshi@Microsoft.com with any questions, comments or feedback.

[bookmark: _Walkthrough:_Packaging_&][bookmark: _Toc210189863][bookmark: _Toc210728703]Walkthrough: Packaging & Deploying a Web Application which uses VS Development Web Server
Overview
In this walkthrough, we will try to understand how to package your web application for easy deployment to a web server. Many web sites need a lot of artifacts to function correctly; deploying a web project with all its correct dependencies is not a trivial task. Some of the assets which need to be considered during deployment are:
· Web Content (.aspx, .ascx, images, xml files, PDBs, Binaries etc)
· IIS Settings (Directory browsing, Error pages, Default Documents etc)
· Databases that the web project uses
· GAC Assemblies and COM components which the web project depends upon
· Registry Settings that may be used within the web project
· Security Certificates
· App Pools
New Visual Studio 10 deployment feature sets are intended to eliminate the manual steps involved in deploying all these assets to a web server. The new Web Packaging technology allows you to create a .zip file (or a folder structure) called “Web Package” which is a self describing entity containing all of the above assets and meta data information about where they should be placed on the server.
The new Web Packaging functionality in Visual Studio 10 uses Microsoft Web Deploy technology (MSDeploy) behind the scenes to accomplish the job of creating a web package. To learn more about MSDeploy please visit: http://iis.net/downloads/default.aspx?tabid=34&g=6&i=1602
Note: The latest version of MSDeploy ships with Visual Studio 10 and will be installed automatically as part of your Visual Studio 10 installation.
In the current trial release of Visual Studio 10 we will be focusing on packaging the below assets associated with Web Projects:
· Web Content (.aspx, .ascx, images, xml files, etc)
· IIS Settings (Directory browsing, Error pages, Default Documents etc)
Eventually, in the future releases of Visual Studio, we will try to address more assets mentioned above.
Tasks illustrated in this walkthrough include:
1. How to package and deploy a Web Application Project (WAP)which uses Visual Studio Development Web Server.
Prerequisites
Before starting this walkthrough, please understand the following pre-requisites:
· Web Packaging technology is currently supported only for Web Application Projects (WAP). Web Site Projects are not currently supported. If you would like to try this technology on a Web Site Project that you already have you will first have to convert your Web Site to a WAP. The instructions on how to do this can be found at: http://msdn.microsoft.com/en-us/library/aa983476(VS.80).aspx
· In the current release of Visual Studio 10 some of the functionalities of WAPs as well as Web Sites may not work correctly for .NET Frameworks 2.0, 3.0 & 3.5 so we encourage you to upgrade your existing Web Projects to .NET 4.0 before proceeding. Please do make a copy of your Web Project before upgrading to .NET 4.0. In this walkthrough we will assume that you have either created a new .NET 4.0 WAP or upgraded your existing web project to a .NET 4.0 WAP. Before final release of Visual Studio 10 .NET Frameworks 2.0 till 4.0 will be fully supported
· We assume that the Web Application Project you wish to package and deploy compiles (builds) successfully.
Package and deploy a WAP which uses Visual Studio Development Web Server
1.	Prep up a NEW Visual Studio 10 WAP for packaging deployment
a.	On the File menu, click Project. The New Project dialog box appears.
b.	Select the Web Node and Click “ASP.NET Web Application Project”
c.	Work on your new project until you find it ready for Deployment
2.	Prep up an EXISTING non IIS WAP for packaging and deployment
a.	If you have an existing Web Site project convert it to a WAP project as discussed earlier.
b.	If you have a pre-existing VS 2005 or VS 2008 WAP try to open it in Visual Studio 10. The automatic project upgrade wizard will pop up and guide you through the upgrade process.
3.	For our scenario walkthrough we have taken “My Web Pages Starter Kit” from CodePlex and first converted it into a WAP. This WAP was then upgraded to a Visual Studio 10 WAP. After the upgrade was complete, the new Visual Studio 10 “My Web Pages Starter Kit” loaded as below:
[image:]
4.	Open the property pages of the WAP by double-clicking on the “Properties” in the solution explorer As shown below:
[image:]
Note: You can try these new features by creating a simple new 4.0 Web Application by going to File New Project and creating a new WAP.
We will use some simple projects down the task as well to demonstrate the packaging functionality.
5.	The new Visual Studio 10 WAP property pages will look as below. Do note that on the “Application” tab the Target Framework version can be set to .NET 4.0. Also note that there is a new property tab called “Publish” available.
[image:]
6.	Click on the “Publish” tab to access the Deployment settings. The new “Publish” tab looks as shown below:
[image:]
The red circled items above are potential future functionalities and are not currently implemented. One of the reasons for keeping them here as disabled UI was also to receive feedback from the community on which of these items are really important to be prioritized.
7.	Do note that the Publish tab has configuration options available as shown below.
[image:]
The Publish tab is made configuration aware as deployment settings tend to change from environment to environment; for e.g. many times developers want to deploy their “Debug” configuration on a Dev Server and include PDBs as part of that deployment. When the same web is deployed in a “Release” configuration on a production server the deployment may exclude PDBs.
Debug and Release configurations are available by default from Visual Studio but if you would like to add more build configurations (for various server environments like “Dev”, “QA”, “Staging”, “Production” etc then you can do so by going to the Build Configuration Manager.
[image:]
You can also select your active configuration for Visual Studio 10 from the Configuration Manager UI as shown above.
In the Publish Tab you can very easily change the Configuration and add settings related to various configurations. All these settings will be stored in the project file (.csproj /.vbproj) and will look as below:
[image:]
Now let us try to understand various available functionalities of the “Publish” tab in this release
8.	Items to Package/Publish – This category in general will help you decide what type of content of your web project you would really like to package/deploy.
[image:]
a.	 Exclude Files from App_Data folder – “App_Data” folder is a special ASP.NET folder where many developers like to put their SQL Express DBs (.mdf/.ldf files), XML files and other content which they consider Data. In many situations on a production web server a full version of SQL Server is available and using SQL Express is not all that relevant. In such scenarios (and for the corresponding configuration e.g “Release”) a user can mark the “Exclude Files from App_Data” as checked.
b.	Exclude Generated Debug Symbols – It is important to understand that generation of debug symbols is different from deployment of the same. Many organizations always generate debug symbols so that they can be used to debug even the production environment if need be and to a great extent this can be considered as a best practice, but that does not mean that organizations deploy their Debug Symbols. If you would like to generate debug symbols for your application, you can do so by going to the “Build” tab (for C#) or the “Compile” tab (for Visual Basic) in the Property Pages and clicking the “Advanced” button at the bottom. Here you will have different options for the level of debug symbols you would like to generate for your WAP.
C#
[image:]
Visual Basic
[image:]
If you select any option other than none for generation of debug symbols in “Build” tab , on the “Publish” tab you can choose whether or not the debug symbols which will be generated during the build process will be packaged/deployed during the publishing process (Step 8.1.2).
9.	IIS Settings
[image:]
The IIS Settings check box is disabled in case the Web Project is not an IIS Web (i.e. it is not attached to IIS Application and Virtual Directory.) We will look at packaging and deploying IIS Settings along with your web in a separate Walkthrough “Packaging and Deploying a WAP which uses IIS”
10.	Package Settings
[image:]
a.	Create MSDeploy Package as a ZIP file
This checkbox allows you to decide whether you would like to create your web package as a .zip file or as a folder structure.
b.	Package Location
This is an important and required property as it defines the path at which Visual Studio will place your web package. If you choose to change this path, make sure that you have write access to the location as the packaging task will fail if Visual Studio does not have adequate access to write to this location.
Also make sure that Package Location is modified based on whether you choose to create the web package as a .ZIP file or as a folder structure.
c.	Destination IIS Application Path
This property is not available for non-IIS WAPs. It will be further discussed in a separate Walkthrough: “Packaging and Deploying a WAP which uses IIS”.
d.	Destination Application Physical Path
As we discussed earlier in the walkthrough, the web package internally contains metadata about your web. Some of the most important information which is embedded inside the web package is the physical location where the package should be installed. This property allows you to pre-specify this embedded information.
If you would like to make the decision of the destination web’s physical location during deployment time (instead of at package creation time) then that will be possible as well. The Destination Application Physical Path is the default value which will be used if the value is not specified during deployment.
e.	Create Package Button
This button will produce a web package for your WAP at the location specified in the “Package Location” text box.
Note: The Create Package button creates the web package only for Active configuration. By default, “Debug” is the active configuration inside Visual Studio. If you would like to change the Active configuration you can do so as specified in the Step 7 above. You can certainly set properties for all available configurations by switching the configuration on the “Publish” tab, but that action does not change the Active configuration
[image:]
11.	Click the Create Package Button to create your web package
Click the “Create Package” button and check the output window. When you see “Publish Succeeded” as below in the output window, your package is successfully created.
[image:]
To access the package, go to the location specified in the “Package Location” textbox. By default, this is in the obj/Configuration/Package folder under your project root directory (Configuration here implies Active Configuration, like Debug/Release etc).
Let us inspect the Package Folder to understand different files generated by Visual Studio 10.
[image:]
· Log folder – The log folder contains various log files created by Visual Studio 10 while creating the package. These files can be used for troubleshooting purposes.
· PackageTmp folder – The PackageTmp folder contains all the files required to run your web application. The content of this folder will be pushed inside the web package. Visual Studio keeps this folder to help in incremental packaging so that your consecutive web packages are created much faster, if not all the files in your web change.
· ProjectName.deploy.cmd – This batch file is generated by Visual Studio to help you install the web package to the destination server. We will look at how to use this file in subsequent steps.
· ProjectName.DestManifest.xml - This file gives pointers to where the package has to be installed. Visual Studio 10 takes the value from the “Destination Application Physical Path” text box discussed earlier in the walkthrough and inserts it inside the DestManifest. If you choose to install the Web Package at a different location, this is the file you would manually modify.
· ProjectName.SourceManifest.xml – This file is internally used by Visual Studio to create your package. This file is for extensibility if some enterprises would like to change the way Visual Studio creates web packages. We will learn more about this file in eventual documentation. For the purposes of this walkthrough, this file can be considered a Visual Studio internal file.
· ProjectName.zip – This is the actual web package file. If you choose not to create a .zip package, there will be a folder named archive created, which is a folder structure representation of your package.
12.	Transport your web package to the server
Usually, once your web package is created you will want to take it to the server to install it. Many times you can hand the package to your server administrator to install the package. If you would like to move your package, you need to take 3 files from the items discussed in Step 11:
1. ProjectName.deploy.cmd
2. ProjectName.DestManifest.xml
3. ProjectName.zip
13.	Preparing your Web Server for Deployment
You will need MSDeploy installed on the server before you can continue with your deployment. You can download and install MSDeploy on the server by downloading it from:
http://go.microsoft.com/fwlink/?LinkId=109365 It is recommended that you first go to server IIS Management Console and set up an IIS application for your target web. You can do so by following the below steps:
Note that you will need Administrative privileges on the machine to complete these steps.
a.	Go to StartSearch/Run and hit enter after typing inetmgr in the text box, as shown below:
[image:]
b.	Right-click one of the existing Web Sites (or create a new one) and click “Add Application”.
[image:]
c.	 Map the new Application to the Physical path of your choice. Note the Physical Path as we will eventually deploy the Application to this Physical Path.
[image:]

14.	Deploying your Web Package
In this task we have created a web package which does not contain IIS Settings, hence our goal is to deploy this package to a Physical Path highlighted in the image above.
a.	Moving the web package to the web server
In Step 12 we discussed 3 files which are relevant for transporting the web package. As shown below, we have moved these three files to a location on the web server where we already created the IIS application as shown in Step 13. You can move these files to your QA Server, Staging Server or any other server where you would like to deploy your web.
[image:]
b.	Modifying the DestManifest
Change the Path in the DestManifest to match the physical path of the IIS App that we created in Step 13, as shown below:
Before
<sitemanifest>
<contentPath path="D:\Vishal\WebApplication3_Deploy" linkName="VSPublish_contentPath" />
</sitemanifest>
After
<sitemanifest>
<contentPath path="D:\Vishal\WebApp3" linkName="VSPublish_contentPath" />
</sitemanifest>
c.	Run the Batch File in Whatif mode
Next we need to start the command prompt on the server which has MSDeploy already installed and navigate to the MSDeploy installation location. You can do so by going to Start Run and typing “cmd”.
In the command prompt, follow the following steps: [image:]
· Cd “D:\Program Files\IIS\Microsoft Web Deploy” Cd “D:\Program Files\IIS\Microsoft Web Deploy” (This should be the location where MSDeploy is installed on your installation box.)
· Give path to the batch file we copied in Step 14.a and use a switch /t. /t implies Trial Mode. This calls MSDeploy with a “WhatIf” switch will does not actually perform the operation of deployment but shows you what will happen if you installed the package. This is extremely useful as you may want to hand over your package to your server administrator. The server administrator can then run the package using the /t switch on the Batch file and check what would be the impact on the server. In the above example we can note that MSdeploy is informing us that 5 files will be added to the location D:\Vishal\WebApp3.
· If you are satisfied with the changes MSDeploy will make, then you can call the batch file again with /y switch. /y implies Yes Mode. This will instruct MSDeploy to actually install the package. After running the batch file with /y, this is how command prompt will look:
[image:]
· The batch file outputs the MSDeploy command which is executed behind the scene so that you can follow similar commands to directly call MSDeploy without the batch file produced by Visual Studio 10.
d.	Verify your deployed Web
Now you can go to inetmgr and verify whether your web was correctly deployed and is functioning correctly or not, as shown below:
[image:]
On browsing the Defaul.aspx we can see:
[image:]
Related Web Deployment Walkthroughs
· Sometimes you have a complicated IIS web and bunch of IIS settings set up, including Default Documents, Error Pages, etc. In that situation it would be worth reading the Visual Studio 10 walkthrough titled “Packaging & Deploying a Web Application which uses IIS.”
· Many things like DB connection strings, WCF Endpoints, Debug Flags, and App Settings keep changing from environment to environment. Visual Studio 10’s walkthrough titled “Web.Config Transformation” explains the new easy concepts around web.debug.config and web.configuration.config to help you manage your configuration settings during deployment.
Provide Feedback
We would love hear your feedback about the new web deployment features in Visual Studio 10. You can directly send an email to Vishal.Joshi@Microsoft.com with any questions, comments or feedback.

[bookmark: _Walkthrough:_Packaging_&_1][bookmark: _Toc210189864][bookmark: _Toc210728704]Walkthrough: Packaging & Deploying a Web Application which uses IIS
Overview
In this walkthrough, we will demonstrate how to package your web application for easy deployment to a web server. Many web sites need a lot of artifacts to function correctly; deploying a web project with all its correct dependencies is not a trivial task. Some of the assets which need to be considered during deployment are:
· Web Content (.aspx, .ascx, images, xml files, PDBs, Binaries etc)
· IIS Settings (Directory browsing, Error pages, Default Documents etc)
· Databases that the web project uses
· GAC Assemblies and COM components which the web project depends upon
· Registry Settings that may be used within the web project
· Security Certificates
· App Pools
New Visual Studio 10 deployment feature sets are intended to eliminate the manual steps involved in deploying all these assets to a web server. The new Web Packaging technology allows you to create a .zip file (or a folder structure) called a “Web Package” which is a self describing entity containing all of the above assets and meta data information about where they should be placed on the server.
The new Web Packaging functionality in Visual Studio 10 uses Microsoft Web Deploy technology (MSDeploy) behind the scenes to accomplish the job of creating a web package. To learn more about MSDeploy please visit: http://iis.net/downloads/default.aspx?tabid=34&g=6&i=1602
Note: The latest version of MSDeploy already ships with Visual Studio 10 and will be installed automatically as part of your Visual Studio 10 installation.
In the current trial release of Visual Studio 10, we will be focusing on packaging the below assets associated with Web Projects:
· Web Content (.aspx, .ascx, images, xml files etc)
· IIS Settings (Directory browsing, Error pages, Default Documents etc)
Eventually in the future releases of Visual Studio we will try to address more of the assets mentioned above.
Tasks illustrated in this walkthrough include:
1.	How to package and deploy a WAP which has IIS Settings associated with it.
Prerequisites
Before starting this walkthrough, please understand the following pre-requisites:
· Web Packaging technology is currently supported only for Web Application Projects (WAP). Web Site Projects are not currently supported. If you would like to try this technology on a Web Site Project that you already have, you will first have to convert your Web Site to a WAP. The instructions on how to do this can be found at: http://msdn.microsoft.com/en-us/library/aa983476(VS.80).aspx
· In the current release of Visual Studio 10, some of the functionalities of WAPs as well as Web Sites may not work correctly for .NET Frameworks 2.0, 3.0 & 3.5, so we encourage you to upgrade your existing Web Projects to .NET 4.0 before proceeding. Please make a copy of your Web Project before upgrading to .NET 4.0. In this walkthrough we will assume that you have either created a new .NET 4.0 WAP or upgraded your existing web project to a .NET 4.0 WAP. Before the final release of Visual Studio 10, .NET Frameworks 2.0 till 4.0 will be fully supported.
· As we are hoping to use IIS based WAPs in this walkthrough, we’ve pre-set the “Default Web Site” to use an application pool which.NET Framework version is .NET 4.0. If you have other projects which want to use different .NET Framework version, you will have to select “Default Web Site” application pool to an application pool that matches the correct version.
Package and deploy a WAP which uses IIS
1.	Prepare a NEW Visual Studio 10 WAP for packaging deployment.
a.	On the File menu, click Project. The New Project dialog box appears.
b.	Select the Web Node and click “ASP.NET Web Application Project”.
c.	Work on your new project until it is ready for deployment.
2.	Prepare an EXISTING IIS WAP for packaging and deployment.
a.	If you have an existing Web Site project, convert it to a WAP project as discussed earlier.
b.	If you have a pre-existing Visual Studio 2005 or Visual Studio 2008 WAP, try to open it in Visual Studio 10. The automatic project upgrade wizard will pop up and guide you through the upgrade process.
3.	Note that because we are creating a WAP which uses IIS you will need to start Visual Studio in Administrator mode. For our scenario walkthrough we have taken “My Web Pages Starter Kit” from CodePlex and first converted it into a WAP. Eventually the Starter Kit WAP was upgraded to a Visual Studio 10 WAP. After the upgrade is complete the new Visual Studio 10 with “My Web Pages Starter Kit” loaded looks as below:
[image:]
4.	Open the property pages of the WAP by double-clicking “Properties” in the solution explorer as shown below:
 [image:]
Note: You can try these new features by creating a simple new 4.0 web Application by going to File New Project and creating a new WAP.
5.	The new Visual Studio 10 WAP property pages will look as below. Do note that on the “Application” tab the Target Framework version can be set to .NET 4.0. Also note that there is a new property tab called “Publish” available.
[image:]
Before moving on let us set this Web Application to use the local IIS Web Server and set some settings. We can do this by going to the Web Tab in the property pages and changing the web from using “Visual Studio Development Web Server” to “Local IIS Server” as shown below:
[image:]

	InetMgr View Before							 InetMgr View After
[image:] 			 [image:]
Let us go ahead and modify a few IIS default settings for MyWebPagesStarterKit_Net40 Application, as shown below:
· Change Default Document
[image:]
· Change 404 Error Page
[image:]
· Before changing the Default document when we type the URL http://localhost/MyWebPagesStarterKit_Net40/ we get the below Default.aspx page:
[image:]
· After changing the Default document setting in IIS when we type the URL http://localhost/MyWebPagesStarterKit_Net40/ we get the below Login.aspx page:
[image:]
Eventually our goal is to ensure that we persist all these IIS settings effortlessly in the Deployed Web.
6.	Let us now get back to Visual Studio in the application and click on the “Publish” tab to access the Deployment settings. The new “Publish” tab looks as shown below:
[image:]
The red circled items above are potential future functionalities and are not currently implemented. One of the reasons for keeping them here as disabled UI was also to receive feedback from the community on which of these items are really important to be prioritized.
7.	Note that the Publish tab has configuration options available as shown below.
[image:]
The Publish tab is made configuration-aware as deployment settings tend to change from environment to environment; for example, many times developers want to deploy their “Debug” configuration on a Dev Server and include PDBs as part of that deployment. When the same web is deployed in “Release” configuration on a production server the deployment may exclude PDBs.
Debug and Release configurations are available by default from Visual Studio but if you would like to add more build configurations (for various server environments like “Dev”, “QA”, “Staging”, “Production” etc then you can do so by going to the Build Configuration Manager.
[image:]
You can also select your active configuration for Visual Studio 10 from the Configuration Manager UI as shown above.
In the Publish Tab you can very easily change the Configuration and add settings related to various configurations. All these settings will be stored in the project file (.csproj /.vbproj) and will look as below:
[image:]
8.	Now let us look at various available functionalities of the “Publish” tab in this release.
a.	Items to Package/Publish – This category in general will help you decide what type of content of your web project you would really like to package/deploy.
[image:]
1.	 Exclude Files from App_Data folder – “App_Data” folder is a special ASP.NET folder where many developers like to put their SQL Express DBs (.mdf/.ldf files), XML files and other content which they consider Data. In many situations on production web servers a full version of SQL Server is available and using SQL Server Express is not all that relevant. In such scenarios (and for the corresponding configuration e.g “Release”) a user can mark the “Exclude Files from App_Data” as checked.
2.	Exclude Generated Debug Symbols – It is important to understand that generation of debug symbols is different from deployment of the same. Many organizations always generate debug symbols so that they can be used to debug even the production environment if need be and to a great extent this can be considered as a best practice, but that does not mean that organizations deploy their Debug Symbols. If you would like to generate debug symbols for your application you can do so by going to the “Build” tab in the Property Pages and clicking the “Advanced” button at the bottom. Here you will have different options for the level of debug symbols you would like to generate for your WAP
C#
[image:]
Visual Basic
[image:]
If you select any option other than none for generation of debug symbols on the “Build” tab then on the “Publish” tab you can choose whether or not the debug symbols which will be generated during the build process will be packaged/deployed during the publishing process (Step 8.1.2)
9.	IIS Settings
[image:]
The IIS Settings check box is disabled in case the Web Project is not an IIS Web (i.e. it is not attached to IIS Application and Virtual Directory as described in Step #5). If it is an IIS web this is the only check box that you need to check in order for Visual Studio 10 and MSDeploy to collect and package all your IIS Settings behind the scene. Some of the Settings examples are shown in Step 5 above but you can modify any of the settings shown below and they all will get automatically packaged just by the virtue of checking the above check box:
[image:]
NOTES:
· In this release of Visual Studio, AppPools and Security Certs are not included by default but in the future releases you will have an option to include or exclude them. If your deployment box does not have the same AppPool which your web will be using then the package deployment will fail.
· If you are running on a Windows XP machine, IIS Settings option is not currently supported but in the future releases this will be supported as well.
· If you are running on a machine with IIS 6 & above then this functionality is completely supported.
10.	Package Settings
[image:]
a.	Create MSDeploy Package as a ZIP file
This checkbox allows you to decide whether you would like to create your web package as a .zip file or as a folder structure.
b.	Package Location
This is an important and required property as it defines the path at which Visual Studio will place your web package. If you choose to change this path make sure that you have write access to the location as the packaging task will fail if Visual Studio does not have adequate access to write to this location.
Also make sure that Package Location is modified based on whether you choose to create the web package as a .ZIP file or as a folder structure.
c.	Destination IIS Application Path
This property allows you to give the IIS Application a name that you will use at the destination Web Server. You will have an opportunity change this at the time of deployment but here you are given an opportunity to choose a default name.
d.	Destination Application Physical Path
As we discussed earlier in the walkthrough, the web package internally contains metadata about your web. Some of the most important information which is embedded inside the web package is the physical location where the package should be installed. This property allows you to pre-specify this embedded information.
You will have an opportunity change this at the time of deployment but here you are given an opportunity to choose a default physical location.
e.	Create Package Button
This button will produce a web package for your WAP at the location specified in the “Package Location” text box.
Note: The Create Package button creates a web package only for Active configuration. By default “Debug” is the active configuration in Visual Studio. If you would like to change the Active configuration you can do so as specified in Step 7 above. You can certainly set properties for all available configurations by switching the configuration on top of the “Publish” tab but that action does not change the Active configuration.
[image:]

11.	Click Create Package Button to create your web package
Click the “Create Package” button and check the output window. When you see “Publish Succeeded” as below in the output window then your package is successfully created.
[image:]
To access the package go to the location specified in the “Package Location” textbox. By default this is in the obj/Configuration/Package folder under your project root directory (Configuration here implies Active Configuration like Debug/Release etc).
Let us inspect the Package Folder to understand different files generated by Visual Studio 10
[image:]
· Log folder – The log folder contains various log files created by Visual Studio 10 while creating the package. These files can be used for troubleshooting purposes.
· PackageTmp folder – The PackageTemp folder contains all the files required to run your web application. The content of this folder will be pushed inside the web package. Visual Studio keeps this folder to help in incremental packaging so that your consecutive web packages are created much faster if not all the files in your web change.
· ProjectName.deploy.cmd – This batch file is generated by Visual Studio to help you install the web package to destination server. We will look at how to use this file in subsequent steps.
· ProjectName.DestManifest.xml - This file gives pointers to where the package has to be installed. Visual Studio 10 takes the value from the “Destination Application Physical Path” text box discussed earlier in the walkthrough and inserts it inside the DestManifest. If you choose to install the Web Package at a different location, this is the file you should manually modify.
· ProjectName.SourceManifest.xml – This file is internally used by Visual Studio to create your package. This file is for extensibility if some enterprises would like to change the way Visual Studio creates web packages. We will learn more about this file in eventual the documentation For the purposes of this walkthrough this file can be considered as a Visual Studio internal file.
· ProjectName.zip - This is the actual web package file. If you choose not to create a .zip package then there would be a folder named archive created which is a folder structure representation of your package.
12.	Transport your web package to the server
Usually once your web package is created you would take it to the server to install it. Many times you can hand the package to your server administrator to install the package. If you would like to move your package then you need to take 3 files from the items discussed in Step 11:
· ProjectName.deploy.cmd
· ProjectName.DestManifest.xml
· ProjectName.zip
13.	Preparing your Web Server for Deployment
You will need MSDeploy installed on the server before you can continue with your deployment. You can download and install MSDeploy on the server by downloading it from:
http://go.microsoft.com/fwlink/?LinkId=109365

14.	Deploying your Web Package
In this task we have created a web package which contains IIS Settings, hence our goal is to deploy this package to IIS. As part of this deployment Visual Studio 10 and MSDeploy technology will create an Application in IIS for you. The task of creating an application in IIS today requires Admin privileges hence you will have to perform the deployment in Admin mode.
a.	Moving the web package to the web server
In Step 12 we discussed 3 files which are relevant for transporting the web package. As shown below we have moved these three files to a location on the web server where we would like to deploy our application. You can move these files to your QA Server, Staging Server or any other server where you would like to deploy your web app.
[image:]
b.	Modifying the DestManifest
If you are not satisfied with the default value of the Destination IIS Application Path that you provided in Step 10.c then feel free to change the Path in the DestManifest to provide the IIS Application name where you would like to deploy your application:
Before
<sitemanifest>
<appHostConfig path="Default Web Site/MyWebPagesStarterKit_Net40_deploy" linkName="VSPublish_appHostConfig" />
<contentPath path="Default Web Site/MyWebPagesStarterKit_Net40_deploy" linkName="VSPublish_contentPath" />
</sitemanifest>
After
<sitemanifest>
<appHostConfig path="Default Web Site/VS10-StarterKit" linkName="VSPublish_appHostConfig" />
<contentPath path="Default Web Site/VS10-StarterKit" linkName="VSPublish_contentPath" />
</sitemanifest>
c.	Run the Batch File in Whatif mode
Next we need to start the command prompt on the server which has MSDeploy already installed and navigate to the MSDeploy installation location. We need to make sure that we start the command prompt in Administrator mode. You can do so as shown in the image below:
[image:]
In the command prompt follow following steps:
· Cd “D:\Program Files\IIS\Microsoft Web Deploy” (This should be the location where MSDeploy is installed on your installation box)
· Give the path to the batch file we copied in Step 14.a and use a switch /t. /t implies Trial Mode. This calls MSDeploy with a “WhatIf” switch will does not actually perform the operation of deployment but shows you what will happen if you installed the package. This is extremely useful as you may want to hand over your package to your server administrator. The server administrator can then run the package using the /t switch on the Batch file and check what would be the impact on the server. In the above example we can note that MSdeploy is informing us that 1285 items will be added to the web. The Server Admin can analyze this entire log and determine what all items are being modified.
· Once satisfied with the changes MSDeploy will make then you or the server admin can call the batch file again with /y switch. /y implies Yes Mode. This will instruct MSDeploy to actually install the package. After running the batch file with /y, below is how command prompt will look:
[image:]
· You will notice that the change count when the batch file was run with the /y switch was 1283 which is slightly different than the change count of the /t switch. This is because the –whatif command of MSDeploy does not really execute the items; it just inspects and extrapolates on what would happen if the command was actually executed. There is a possibility that certain items may be evident only when the command is executed but nevertheless the –whatif command of MSDeploy gives a pretty close approximation of what is likely going to happen.
d.	Verify your deployed Web
Now you can go to inetmgr and verify whether your web was correctly deployed and is functioning correctly or not as shown below:
[image:]
On checking the IIS Settings that we modified in Step 5 we can see that:
· Default Document is changed to Login.aspx as the top item.
[image:]
· Value of 404 error page is changed to the dummy error page we inserted:
[image:]
On browsing the URL http://localhost/VS10-StarterKit/ we can view the below Login.aspx page.
[image:]
e.	General Stats
· This starter kit has approx 2500 files as shown below:
[image:]
· If you go to ToolsOptions and change MSBuild Verbosity to Diagnostic then you will be able to get more detail in the output window about the backend processing and Web Publishing Pipeline (WPP) which is engaged to create the web package.
[image:]
· It is worth noting that after the build is completed Visual Studio 10 takes less than 10 seconds to create the web package which we worked with above.
[image:]
Related Web Deployment Walkthroughs
· Sometimes you do not have a complicated IIS web and instead are using the Visual Studio built-in web server for your development. In that situation it would be worth reading the walkthrough titled “Packaging & Deploying a Web Application which uses VS Development Web Server.”
· Many things like DB connectionstrings, WCF Endpoints, Debug Flags, App Settings etc keep changing from environment to environment. Visual Studio 10’s walkthrough titled “Web.Config Transformation” explains the new easy concepts around web.debug.config and web.configuration.config to help you manage your configuration settings during deployment.
Provide Feedback
We would love hear your feedback about the new web deployment features in Visual Studio 10. You can directly send an email to Vishal.Joshi@Microsoft.com with any questions, comments or feedback.

[bookmark: _Toc210113834][bookmark: _Toc210728705]
XSLT Debugger and Profiler
This section contains the following walkthroughs.
· The XSLT Profiler Add-in for Visual Studio 2008

[bookmark: _The_XSLT_Profiler][bookmark: _Toc210728706]The XSLT Profiler Add-in for Visual Studio 2008
Irinel Crivat, Program Manager
Goal:
Help developers to measure, evaluate, and target performance-related problems in XSLT code by creating detailed XSLT performance reports. The XSLT Profiler includes a wealth of useful hints for XSL and XSLT style sheet optimizations, which are essential for XSLT-based applications that demand maximum performance
[bookmark: _Toc186036041]Walkthrough:
[bookmark: _Toc186036042]Note: The XSLT Profiler is targeted only for the Microsoft Visual Studio 2008 Team System with the Performance Tools feature installed.
1.	Open an XSLT document in Visual Studio (you can use the orgchart.xslt sample file in C:\users\Public\documents\CTPWalkthroughs\Visual Studio\Samples\OrgChartSample).
2.	Click the new option that became available in the XML menu, called Profile XSLT:
[image:]
3.	Provide an input XML document (only if it is not already provided), you will be prompted for the file.
The analysis starts; a notification displays the progress within the document. The XSLT output is visible in the output pane.
[image:]
[bookmark: _Toc186036043]4.	Check the Performance Report - After a performance session ends, the data gathered during profiling is saved in a performance report. A performance report allows you to view and analyze XSLT performance problems.
[image:]
5.	Click on the Current View drop down to get all the available views
6.	Select the Summary View option in the CurrentView drop - By default, a performance report is displayed in the Summary view. This view is a starting point in your investigation to determine performance issues with your XSLT documents. The Summary view lists the following data points:
· Most called functions
· Functions with the most individual work
· Functions taking the longest
[image:]
By default, there are three columns for each data point: Name (of the function), and the Number of Calls in absolute value and in percentage value. From each data point in the Summary view, you can navigate to more detailed views by right-clicking on the function data points.
[bookmark: _Toc186036045]7.	Select the Function View option in the Current View drop- The Function view lists functions called during profiling. You can sort the data by clicking a column name. The columns displayed by default are:
· Function Name
· Elapsed Inclusive Time
· Elapsed Exclusive Time
· Application Inclusive Time
· Application Exclusive Time
· Number of Calls
[image:]
All time columns are displayed in both absolute values and percentages. The term “exclusive” refers to the total time a function spent executing and does not include time spent by other functions that were called during the execution of this function.
The term “inclusive” refers to the total time a function spent executing, including execution time of all the functions it called and whether any of those called functions called other functions in turn.
[bookmark: _Toc186036046]8.	Select Caller/Callee View in the Current View drop
The Caller/Callee view has the following three distinct parts:
· Functions That Called: All the functions that called a particular function are listed at the top part of the view.
· Current Function: The particular function that was called is listed in the middle part of the view.
· Functions That Were Called by: All the functions that were called by the particular function are listed at the bottom part of the view.
[image:]
If a function named SyncToNavigator appears in the middle part of the view, all the functions that called the SyncToNavigator function appear in the top part of the view and all the functions that were called by the SyncToNavigator appear in the bottom part of the view:
You can change the function in the middle part of the view by double-clicking any of the function listed in the other two parts of the view. The view is then updated automatically to reflect the changes.
You can also sort the data by clicking column names.
9.	Select CallTree View in the Current View drop
This view is a tree view of program execution.
[image:]
The Calltree view shows the root of the tree as the process name and the functions are the nodes of the tree. This view allows you to drill into specific call traces and analyze which traces have the greatest performance impact. The view is similar to the call stack view found during the debugging application. In addition to the columns you saw in the Function view (Function Name, Elapsed Inclusive Time, Elapsed Exclusive Time, Application Inclusive Time, Application Exclusive Time, Number of Calls), in the Calltree view, there is an additional column to display the Module Name.
Select Marks in the Current View drop
With the SLT Profiler, there are “marks” that show up in the data collection stream with an associated comment. Marks are places in the code that have counters. When you tell the XSLT Profiler to collect XSLT performance counters, the counters get collected every time one of these marks gets executed. The data is displayed in a table containing the Mark ID, Mark Name (Start Program, End Program), and the Time Stamp. The marks are not aggregated and show up in chronological order in the “Marks” view of the performance report.
[image:]
Select Modules in the Current View drop
The Modules view is a flat list of all functions aggregated to the module level. Expand or collapse the module name to display or close the view of module performance data. You can sort the data by clicking a column name. By default, there are both absolute values and percentage numbers for Elapsed Inclusive Time, Elapsed Exclusive Time, Application Inclusive Time, Application Exclusive Time, and Number of Calls.
[image:]
Select Process in the current View drop
The Process view displays a table that includes the Process ID, Process Name, Begin Time, and the End Time. Data can be sorted by clicking column names.
[image:]
(only if you need more detailed results on Performance Reports) Add the following key to registry
 [HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\XsltProfiler]
"EnableFastCaps"="1"
As you can see the reports will start to include all System.Xml runtime calls as well. The better analysis of System.Xml runtime will lead to better performing XSLT Instructions.
[image: Untitled-1]
[bookmark: _Toc210113835][bookmark: _Toc210728707]GelFX for Windows Presentation Foundation
This section contains the following walkthroughs.
· What's New in User-Interface Development

[bookmark: _What's_New_in_4][bookmark: _Toc210728708]What's New in User-Interface Development
GelFx is new code in the Visual Studio 2010 for native code access to Windows Presentation Foundation (WPF) through a data-binding layer.
 Gel provides an abstraction layer between data models and the program logic and presentation that is adapted for Visual Studio. This enables the following scenarios:
· The user interface (UI) layer can use alternative presentation systems (for example, the AboutBox in the UI has both a WPF UI dialog implementation and the legacy Win32 dialog implementation; both presentations use the same data and logic; the presentation can be switched at runtime).
· The presentation layer can be tested separately from the data models and data logic.
· The UI layer can be completely replaced with a test UI hook object. This allows either intercepting and verifying data consistency, or completely replacing and emulating the UI while testing the data model and the logic driving the UI.
· The UI layer can be included in other simpler applications and tested with mocked data. Faster changes to UI design are possible, user experience designers can work on the code without developers’ assistance, and so on.
· For managed code, components can be tested in a uniform way.
See Also
In the Visual Studio SDK, see the reference information in Gel.chm.

[bookmark: _Toc210113836][bookmark: _Toc210728709]
Working with Data
[bookmark: _Toc210113837][bookmark: _Toc210728710]Working with Data in WPF Applications
This section contains the following walkthroughs.
· What’s New in the WPF Designer for Binding WPF Controls to Data
· Walkthrough: Using the Designer to Bind WPF Controls to Data in a Dataset
· Walkthrough: Using the Designer to Bind WPF Controls to Data in an Entity Data Model

[bookmark: _What’s_New_in_1][bookmark: _Toc210728711]What’s New in the WPF Designer for Binding WPF Controls to Data
Visual Studio 2010 CTP adds drag-and-drop data binding to WPF projects. After you add a data source to your project, you can generate data-bound WPF controls by dragging items from the Data Sources window to the WPF designer. Visual Studio generates code and XAML that binds the control to the specified data object, and loads the data object with data from the underlying data store. In this release, you can use drag-and-drop data binding with data in Entity Data Models and typed datasets.
[bookmark: _Walkthrough:_Using_the][bookmark: _Toc210728712]Walkthrough: Using the Designer to Bind WPF Controls to Data in a Dataset
In this walkthrough, you will create a WPF application that contains data-bound controls. The controls are bound to related tables in a typed dataset that is generated from the Northwind sample database. To create the data-bound controls, you will drag data tables and columns from the Data Sources window to a window in the WPF designer. Visual Studio automatically configures the data bindings for the controls. This is a new feature in Visual Studio 2010 CTP that enhances the data binding experience for WPF applications in Visual Studio.
Tasks illustrated in this walkthrough include:
1.	Creating a WPF application and a typed dataset that is generated from data in the Northwind sample database.
2.	Binding WPF controls to data in the typed dataset:
· Binding an existing combo box to a data column, so that the combo box displays company names.
· Generating a grid of data-bound controls to display orders for the selected company.
· Generating a list view to display the details for the selected order.
Prerequisites
This walkthrough requires the following software. This software is included with the Virtual PC image for Visual Studio 2010 CTP.
Visual Studio 2010 CTP
· Microsoft SQL Server 2008 Express
· Northwind.mdf sample database file.
To create the WPF Application project
1.	Start Visual Studio.
2.	On the File menu, click Project. The New Project dialog box appears.
3.	In the Project types pane, expand Visual C# or Visual Basic, and click Windows.
4.	In the Templates list, click WPF Application.
5. 	Optionally change the name or location of the new project, and click OK.
The new project opens in Visual Studio.
To create a typed dataset for the Northwind sample database
1.	Make sure that the SQL Server 2008 Express service is running. For more information, see How to: Start an Instance of SQL Server (SQL Server Configuration Manager).
2.	On the Data menu, click Show Data sources.
The Data Sources Window opens.
3.	In the Data Sources Window, click Add New Data Source.
The Data Source Configuration Wizard opens.
4.	On the Choose a Data Source Type page, click Database, and click Next.
5.	On the Choose Your Data Connection page, click New Connection.
6.	In the Add Connection dialog box, make sure that the Data source field displays Microsoft SQL Server Database File (SqlClient). If another data source is displayed, click Change, and select Microsoft SQL Server Database File.
7.	Next to the Database file name field, click Browse and navigate to the C:\users\Public\documents\CTPWalkthroughs\Northwind folder. Select the Northwind.mdf file, and then click Open.
8.	In the Add Connection dialog box, click OK.
9.	In the Choose Your Data Connection page, click Next. If you are prompted to save a copy of the database file to your project, click Yes.
10.	On the Save the Connection String to the Application Configuration File page, click Next.
11.	On the Choose Your Database Objects page, expand Tables, and then select the following tables:
· Customers
· Order Details
· Orders
A typed dataset named NorthwindDataSet is added to your project, and this dataset and its tables appear in the Data Sources window.
12.	Build the project. You must build the project before you can drag data-bound controls to the WPF window.
Note: If you double-click NorthwindDataSet.xsd in Solution Explorer, Visual Studio opens the dataset schema in the XML Editor instead of the Dataset Designer. This is a known issue in Visual Studio 2010 CTP. To open the dataset in the Dataset Designer in this release, right-click NorthwindDataSet.xsd and click View Designer.
To bind an existing combo box control to a data column
You can bind an existing control in the WPF designer to data by dragging tables or columns from the Data Sources window to the control. This is especially useful in WPF applications, where the UI of the application might be created in another application, such as Microsoft Expression Blend, and then imported into Visual Studio.
1.	In Solution Explorer, double-click Window1.xaml.
The window opens in the WPF designer.
2.	In the Properties window, change the Width property to 700, and the Height property to 500.
3.	On the View menu, click Toolbox.
4.	From the Toolbox, drag a ComboBox to the upper-left corner of the window.
5.	In the Data Sources window, expand Customers.
If the Data Sources window is not visible, first click Show Data Sources on the Data menu.
6.	From the Data Sources window, drag CompanyName to the combo box on the window, and release the mouse.
Visual Studio generates XAML and C# or Visual Basic code to bind the combo box control to the CompanyName data column.
At this point, the Data Sources window and the WPF window in the designer should look similar to the following screenshot.
[image:]
To generate a grid of WPF controls that are bound to the Orders table
1.	In the Data Sources window, click the drop-down arrow for the Orders table that is a child of Customers and choose Details.
Note: Visual Studio 2010 CTP does not include a WPF DataGrid control. In this walkthrough, you will use the Details option and the ListView control to display tables of data.
2.	Expand the Orders table under Customers.
3.	Click the drop-down arrow for OrderID and choose ComboBox.
4.	From the Data Sources window, drag the Orders table that is a child of the Customers table to the window in the WPF designer, beneath the combo box you added earlier.
Visual Studio generates XAML and C# or Visual Basic code to instantiate a Grid that contains a set of controls that are bound to data in the Orders table.
At this point, the Data Sources window and the WPF window in the designer should look similar to the following screenshot.
[image:]
To generate a list view that is bound to the Order Details table
· From the Data Sources window, drag the Order Details table that is a child of the Orders table to the window in the WPF designer, to the right of the controls you added earlier.
Visual Studio generates XAML and C# or Visual Basic code to instantiate a ListView that displays details for the selected order.
At this point, the Data Sources window and the WPF window in the designer should look similar to the following screenshot.
[image:]
To test the application
1.	Press F5.
The application builds and runs. Verify the following:
· The combo box at the top of the window displays Alfreds Futterkiste. This is the name of the first company record in the Customers table.
· Order information is displayed in the controls in the Grid and in the ListView.
2.	In the combo box at the top of the window, choose a different company.
Verify that the orders and order details are updated.
3.	In the Order ID combo box in the Grid, choose a different order.
Verify that the order details are updated for the selected order.
4.	Close the application.

[bookmark: _Walkthrough:_Using_the_1][bookmark: _Toc210728713]Walkthrough: Using the Designer to Bind WPF Controls to Data in an Entity Data Model
In this walkthrough, you will create a WPF application that contains data-bound controls. The controls are bound to related objects in an Entity Data Model that is generated from the Northwind sample database. To create the data-bound controls, you will drag entity objects from the Data Sources window to a window in the WPF designer. Visual Studio automatically configures the data bindings for the controls. This is a new feature in Visual Studio 2010 CTP that enhances the data binding experience for WPF applications in Visual Studio.
Tasks illustrated in this walkthrough include:
1.	Creating a WPF application and an Entity Data Model that is generated from data in the Northwind sample database.
2.	Binding WPF controls to data in the Entity Data Model:
· Binding an existing combo box to a property of an entity object, so that the combo box displays company names.
· Generating a grid of data-bound controls to display orders for the selected company.
· Generating a list view to display the details for the selected order.
Prerequisites
This walkthrough requires the following software. This software is included with the Virtual PC image for Visual Studio 2010 CTP.
Visual Studio 2010 CTP
· Microsoft SQL Server 2008 Express
· Northwind.mdf sample database file.
To create the WPF Application project
1.	Start Visual Studio.
2.	On the File menu, click Project. The New Project dialog box appears.
3.	In the Project types pane, expand Visual C# or Visual Basic, and click Windows.
4.	In the Templates list, click WPF Application.
5.	Optionally change the name or location of the new project, and click OK.
The new project opens in Visual Studio.
To create an Entity Data Model for the Northwind sample database
1.	Make sure that the SQL Server 2008 Express service is running. For more information, see How to: Start an Instance of SQL Server (SQL Server Configuration Manager).
2.	On the Project menu, click Add New Item.
3.	In the Templates list, click ADO.NET Entity Data Model.
4.	Change the name to NorthwindModel.edmx, and click Add.
The Entity Data Model Wizard opens.
5.	On the Choose Model Contents page, click Generate from database, and click Next.
6.	On the Choose Your Data Connection page, click New Connection.
7.	In the Choose Data Source dialog box, click Microsoft SQL Server Database File, and then click Continue.
8.	In the Connection Properties dialog box, click Browse and navigate to the C:\users\Public\documents\CTPWalkthroughs\Northwind folder. Select the Northwind.mdf file, and then click Open.
9.	In the Connection Properties dialog box, click OK.
10.	In the Choose Your Data Connection page, click Next. If you are prompted to save a copy of the database file to your project, click Yes.
11.	On the Choose Your Database Objects page, expand Tables, and then select the following tables:
· Customers
· Order Details
· Orders
12.	Click Finish.
The NorthwindModel.edmx file opens in the designer, and the entity objects that represent the tables you selected are added to the Data Sources window.
13.	Build the project. You must build the project before you can drag data-bound controls to the WPF window.
To bind an existing combo box control to an entity property
You can bind an existing control in the WPF designer to data by dragging entities or properties from the Data Sources window to the control. This is especially useful in WPF applications, where the UI of the application might be created in another application, such as Microsoft Expression Blend, and then imported into Visual Studio.
1.	In Solution Explorer, double-click Window1.xaml.
The window opens in the WPF designer.
2.	In the Properties window, change the Width property to 700, and the Height property to 500.
3.	On the View menu, click Toolbox.
4.	From the Toolbox, drag a ComboBox to the upper-left corner of the window.
5.	In the Data Sources window, expand Customers.
If the Data Sources window is not visible, first click Show Data Sources on the Data menu.
6.	From the Data Sources window, drag CompanyName to the combo box on the window, and release the mouse.
Visual Studio generates XAML and C# or Visual Basic code to bind the combo box control to the CompanyName entity property.
At this point, the Data Sources window and the WPF window in the designer should look similar to the following screenshot.
[image:]
To generate a grid of WPF controls that are bound to the Orders entity
1.	In the Data Sources window, click the drop-down arrow for the Orders object that is a child of Customers and choose Details.
Note: Visual Studio 2010 CTP does not include a WPF DataGrid control. In this walkthrough, you will use the Details option and the ListView control to display data in entity objects.
2.	Expand the Orders object under Customers.
3.	Click the drop-down arrow for OrderID and choose ComboBox.
4.	From the Data Sources window, drag the Orders object that is a child of the Customers object to the window in the WPF designer, beneath the combo box you added earlier.
Visual Studio generates XAML and C# or Visual Basic code to instantiate a Grid that contains a set of controls that are bound to data in the Orders object.
At this point, the Data Sources window and the WPF window in the designer should look similar to the following screenshot.
[image:]
To generate a list view that is bound to the Orders_Details entity
· From the Data Sources window, drag the Order_Details object that is a child of the Orders object to the window in the WPF designer, to the right of the controls you added earlier.
Visual Studio generates XAML and C# or Visual Basic code to instantiate a ListView that displays details for the selected order.
At this point, the Data Sources window and the WPF window in the designer should look similar to the following screenshot.
[image:]
To test the application
1.	Press F5.
The application builds and runs. Verify the following:
2.	The combo box at the top of the window displays Alfreds Futterkiste. This is the name of the first company record in the Customers object.
Order information is displayed in the controls in the Grid and in the ListView.
3.	In the combo box at the top of the window, choose a different company.
Verify that the orders and order details are updated.
4.	In the Order ID combo box in the Grid, choose a different order.
Verify that the order details are updated for the selected order.
5.	Close the application.
[bookmark: _Toc210113838][bookmark: _Toc210728714]Build and Deployment

[bookmark: _Toc210113839][bookmark: _Toc210728715]Building Deployment Packages by Using Visual Studio Windows Installer XML (WIX)
This section contains the following walkthroughs.
· What's New in Installer Technology
· Walkthrough: How to Deploy an Application by Using WiX

[bookmark: _What's_New_in_5][bookmark: _Toc210728716]What's New in Installer Technology
Windows Installer XML (WiX) is a set of tools and specifications for easily creating Windows Installer database files. Visual Studio 2010 includes project types for creating various WiX installation package types. The WiX tools model the traditional compile and link model used to create executables from source code. For WiX, source code is written in XML files. These files are validated against a schema, wix.xsd, then processed by a preprocessor, compiler, and linker to create the desired result. WiX has been designed to allow for the easy creation of multiple Windows Installer databases from a small set of source files.

[bookmark: _Walkthrough:_How_to_7][bookmark: _Toc210728717]Walkthrough: How to Deploy an Application By Using WiX
Introduction
WiX is a flexible and powerful technology for building installation packages for your product or application. This walkthrough shows how to create a basic Windows application and then deploy it by using the Windows Installer XML Toolkit (WiX), as follows:
· Create a WiX project.
· Examine the WiX project.
· Create a minimal application.
· Establish a dependency on the application.
· Deploy the application.
· Use the WiX preprocessor.
· Peek inside the build process.
WiX version 3.0 is a feature of Visual Studio 2010. To complete this walkthrough, you must be running Visual Studio under Windows Vista and have the WiX feature installed. To see whether WiX is installed, open Visual Studio and examine the About Microsoft Visual Studio dialog box. Look for the entry Windows Installer XML Toolkit CTP Version 3.0 in the Installed products list.
[image: http://www.starsighted.com/Microsoft/WiX/Images/Wix_InstalledProducts.bmp]
If WiX is not installed, you can install it by opening the Programs and Features page in the Control Panel, and then right-clicking the Visual Studio 2010 entry in the list of programs. Click Uninstall/Change and follow the instructions to add the WiX feature.
Note: If you are running under Windows XP, you may be able to follow the walkthrough. If you are using an older version of Visual Studio, you may be able to follow the walkthrough by installing WiX 3.0 from SourceForge.net. However, these scenarios have not been tested.
Create an Empty WiX Project
In this section, you create a WiX project from which you will build an installation package for an application that you will create later in this walkthrough.
You create a WiX project before you have an application to deploy because WiX projects, like test projects, are easier to maintain when you develop them together with the application. For example, when you add a file to the application, you can add a reference to the file to the WiX project. When your application is complete, the installation package will be ready.
To create a WiX project
1.	Open Visual Studio 2010.
2.	On the File menu, point to New, and then click Project.
3.	In the New Project dialog box, select the WiX project type, and then select the WiX project template. Select Create Directory for Solution, and then, in the Name box, type InstallPackage. In the Solution Name box, type WixTutorial. Enter a location for the solution, for example, D:\.
[image: http://www.starsighted.com/Microsoft/WiX/Images/WiX_EmptyProjectDialog.bmp]
4.	Click OK to create the WiX project.
5.	On the Build menu, click Build Solution.
In the Output window, you may see this warning:

The cabinet 'InstallPackage.cab' does not contain any files. If this installation contains no files, this warning can likely be safely ignored. Otherwise, please add files to the cabinet or remove it.
Because the WiX project does not yet reference an application, there is nothing to install. Nevertheless, an installation package named InstallPackage.msi was built in the bin/Debug folder, together with a file that is named InstallPackage.wixpdb, which contains debugging information. Running the InstallPackage.msi at this point does almost nothing.
Note The installer package InstallPackage.msi is a database that is used by the Windows Installer to determine what is to be installed. You can examine this database by using the Orca utility to open InstallPackage.msi. The Orca utility is included in the Windows Installer SDK. You can download this SDK from the Microsoft Download Center.
Examine the WiX Project
In Solution Explorer, you can see that the new WiX project contains an empty Resources folder and a WiX source file that is named Product.wxs.
[image: WiX_SolutionNoApp.bmp]
Product.wxs is opened in the XML editor.
<?xml version="1.0" encoding="UTF-8"?>
<Wix xmlns="http://schemas.microsoft.com/wix/2006/wi">
 <Product Id="247a5d22-823d-486f-8d6f-f67a39e4e9d4"
 Name="InstallPackage" Language="1033" Version="1.0.0.0"
 Manufacturer="InstallPackage"
 UpgradeCode="00a82dbd-c90e-48ae-807a-3b443308974c">
 <Package InstallerVersion="200" Compressed="yes" />

 <Media Id="1" Cabinet="InstallPackage.cab" EmbedCab="yes" />

 <Directory Id="TARGETDIR" Name="SourceDir">
 <Directory Id="ProgramFilesFolder">
 <Directory Id="INSTALLLOCATION" Name="InstallPackage">
 <!-- TODO: Remove the comments around this Component element
 and the ComponentRef below in order to add resources to
 this installer. -->
 <!-- <Component Id="ProductComponent"
 Guid="53fd220a-cd8a-4c23-9ccb-f00aa203baaf"> -->
 <!-- TODO: Insert files, registry keys,
 and other resources here. -->
 <!-- </Component> -->
 </Directory>
 </Directory>
 </Directory>

 <Feature Id="ProductFeature" Title="InstallPackage" Level="1">
 <!-- TODO: Remove the comments around this ComponentRef element and
 the Component above in order to add resources to this installer. -->
 <!-- <ComponentRef Id="ProductComponent" /> -->
 </Feature>
 </Product>
</Wix>

The outermost Wix element specifies the XML namespace, which is an XMLNS attribute that refers to a schema. This schema enables validation during compilation and auto-completion in Visual Studio through IntelliSense.
The next innermost element is the Product element that defines the properties that are used to identify the product. WiX Product attributes map to Windows Installer properties as follows:
	WiX Product attribute
	MSI Property name
	MSI Value

	Manufacturer
	Manufacturer
	InstallPackage

	Id
	ProductCode
	{247A5D22-823D-486F-8D6F-F67A39E4E9D4}

	Language
	ProductLanguage
	1033

	Name
	ProductName
	InstallPackage

	Version
	ProductVersion
	1.0.0.0

	UpgradeCode
	UpgradeCode
	{00A82DBD-C90E-48AE-807A-3B443308974C}

Note Because executing a file type of .msi invokes the Windows Installer, “MSI” is often used as a synonym for “Windows Installer”.
When the WiX project is created, the Id and UpgradeCode values are generated to uniquely identify the product. Your GUIDs will differ.
The Package element provides information about the Installation package itself. The Media element describes the cabinet that holds the installation components in compressed form. The Directory elements describe the directory structure of the components after installation.
The Component and Feature elements describe the physical and logical payload of the installation package. Here is a brief explanation of these two terms:
· Component
A product installation is physically divided into components. Examples of components include single files, groups of files, COM objects, resources, and registry keys. Each component must be installed in its own folder in a single folder, and each component must be unique. Unique means that no file, file group, or the like, can be part of more than one component, even if the components are deployed in separate products. For more information about components, see Windows Installer Components.
· Feature
A product installation is logically divided into features. For example, Crystal Reports is a feature of Visual Studio 2010. Features can be installed independently of one another. Each feature must have at least one component. For more information about features, see Windows Installer Features.
The Media, Directory, Component, and Feature elements map to MSI tables that have the same names. The ComponentRef element connects features to components, and maps to the MSI FeatureComponents table.
Create a Minimal Application
Let’s create an application to deploy. It makes no difference whether this application is written in Visual C# or Visual Basic. In this walkthrough, we’ll create a Visual C# Windows form application.
To create a Hello World application
1.	In Solution Explorer, right-click the solution node, point to Add, and then click New Project.
2.	Create a Visual C# Windows Forms Application. Name it HelloWorld and accept the default Location. Click OK.
[image: WiX_AddHelloWorld.bmp]
3.	By using the Toolbox, add a label to the form.
4.	In the Properties window, change these label properties:
· Change the label Text to Hello, world!
· Change Font Size to 14.
5.	Press F5 to build and run the solution. It should run without errors and display the Hello, world! message.
[image: WiX_FirstHelloWorld.bmp]
6.	Close the application.
Establish a Dependency on the Application
To deploy an executable file as part of a WiX component, you must create the file before you compile the installation project. In other words, the installation project depends on the application project.
To establish a project dependency
1.	In Solution Explorer, right-click the solution node and then click Project Dependencies.
2.	In the Projects list, select InstallPackage.
3.	In the Depends on list, select HelloWorld.
4.	Click OK.
[image: WiX_Dependency.bmp]
Deploy the Application
Now that you have an application to deploy, you can deploy it.
To deploy the Hello World application
1.	In the XML editor, remove the TODO statements from the Project.wxs file.
2.	Uncomment the remaining comments.
3.	Add this File element as a child element of the Component element:
<File Source="..\..\..\HelloWorld\bin\Debug\HelloWorld.exe" />

Note To see IntelliSense in action, type the line above into the editor instead of cutting and pasting it.
The resulting Project.wxs file should resemble this (your GUIDs will differ):
<?xml version="1.0" encoding="UTF-8"?>
<Wix xmlns="http://schemas.microsoft.com/wix/2006/wi">
 <Product Id="247a5d22-823d-486f-8d6f-f67a39e4e9d4"
 Name="InstallPackage" Language="1033" Version="1.0.0.0"
 Manufacturer="InstallPackage"
 UpgradeCode="00a82dbd-c90e-48ae-807a-3b443308974c">
 <Package InstallerVersion="200" Compressed="yes" />

 <Media Id="1" Cabinet="InstallPackage.cab" EmbedCab="yes" />

 <Directory Id="TARGETDIR" Name="SourceDir">
 <Directory Id="ProgramFilesFolder">
 <Directory Id="INSTALLLOCATION" Name="InstallPackage">
 <Component Id="ProductComponent"
 Guid="5faa8b0b-37f7-4381-b4e5-25fa6cea39c4">
 <File Source="..\..\..\HelloWorld\bin\Debug\HelloWorld.exe" />
 </Component>
 </Directory>
 </Directory>
 </Directory>

 <Feature Id="ProductFeature" Title="InstallPackage" Level="1">
 <ComponentRef Id="ProductComponent" />
 </Feature>
 </Product>
</Wix>
4.	Build the solution without running it by pressing CTRL+SHIFT+B.

The two projects should compile without errors.
To install the HelloWorld application
· In Windows Explorer, run D:\WixTutorial\InstallPackage\bin\Debug\InstallPackage.msi.
You may see a message that asks you to wait for configuration.
[image: WiX_WaitSetup.bmp]
Because you are creating a subfolder of the Program Files folder, you will be asked for permission by the User Account Control. Click Allow.
You may briefly see the following progress dialog box.
[image: WiX_ProgressBar.bmp]
To test the HelloWorld installation
By default, your application has been installed in the InstallPackage subfolder of the Program Files folder. If you are running on a 64-bit computer, you will find it in the \Program Files (x86)\InstallPackage\ folder instead.
1.	In Windows Explorer, run \Program Files\InstallPackage\HelloWorld.exe.

In a moment, you should see the familiar Hello, world! message. Congratulations! You have successfully deployed your application!
2.	Close the HelloWorld application.
To uninstall the HelloWorld application
Now that you have tested the HelloWorld application, you can uninstall it this way:
1.	In the Control Panel, click Programs and Features.
2.	Right-click the InstallPackage entry and then click Uninstall.
3.	When the User Account Control appears, click Allow.
Use the WiX Preprocessor
You can use the WiX preprocessor to simplify or enhance your WiX source code. Here’s how to use it to simplify the Source attribute in the File element.
The File element currently resembles this:
<File Source="..\..\..\HelloWorld\bin\Debug\HelloWorld.exe" />

Notice that the value of the Source attribute is the full relative path of the executable file HelloWorld.exe. If you were to change your solution to create a Release build of HelloWorld.exe, you would have to remember to change the Source attribute to specify the bin\Release folder. Alternately, you could use a preprocessor variable to specify the configuration folder.
During preprocessing, WiX creates a set of preprocessor variables. Here are some of them:
	Variable Name
	Example Value

	Configuration
	Debug

	OutDir
	bin\Debug\

	SolutionPath
	D:\WixTutorial\InstallPackage.sln

	TargetDir
	D:\WixTutorial\InstallPackage\bin\Debug\

All preprocessor variables that reference folders are terminated by using a backslash character.
You must use a special syntax to get the value of a preprocessor variable. For example, to get the value of TargetDir you would use the syntax $(var.TargetDir).
It’s tempting to rewrite the File element as follows:
<File Source="..\..\..\HelloWorld\$(var.OutDir)\HelloWorld.exe" />

Unfortunately, the preprocessor variables in the earlier table refer to the InstallPackage project, not to the HelloWorld project. Normally, all projects in a solution have the same configuration, but it is possible for an application project to have a different configuration than the WiX project.
A solution to this potential problem is to add a project reference to the WiX project.
To add a project reference
1.	In Solution Explorer, right-click the References folder of the InstallPackage project and then click Add Reference.
2.	Click the Projects tab.
3.	Under Project Name, select HelloWorld and then click Add.
[image: WiX_ProjRef.bmp]
4.	Click OK.

A reference to the HelloWorld project is added to the InstallPackage project.
[image: WiX_SolnWithProjRef.bmp]
Adding a project reference to a WiX project makes a new set of preprocessor project variables available. Here are some of them:
	Project Variable Name
	Example Value

	HelloWorld.Configuration
	Debug

	HelloWorld.Platform
	AnyCPU

	HelloWorld.FullConfiguration
	Debug|AnyCPU

	HelloWorld.ProjectName
	HelloWorld

	HelloWorld.ProjectDir
	D:\WixTutorial\HelloWorld\

	HelloWorld.TargetDir
	D:\WixTutorial\HelloWorld\bin\Debug\

	HelloWorld.TargetPath
	D:\WixTutorial\HelloWorld\bin\Debug\HelloWorld.exe

Remember that you must use a special syntax to get the value of a WiX preprocessor project variable. For example, to get the value of the HelloWorld project TargetDir you would use the syntax $(var.HelloWorld.TargetDir). The Source attribute of the File element can now be rewritten in the following simpler and more robust form:
<File Source="$(var.HelloWorld.TargetPath)" />

Note Adding a project reference also creates a project dependency. If you intend to add a project reference, there is no need to explicitly create a project dependency.
Note The WiX preprocessor supports conditional statements. For more information, see WiX Preprocessor. The line above could have been written as follows:
<?if $(var.HelloWorld.Configuration) = "Debug"?>
 <File Source=
"$(var.HelloWorld.ProjectDir)bin\Debug\$(var.HelloWorld.TargetFileName)" />
<?endif ?>
<?if $(var.HelloWorld.Configuration) = "Release"?>
 <File Source=
"$(var.HelloWorld.ProjectDir)bin\Release\$(var.HelloWorld.TargetFileName)" />
<?endif ?>

A Peek Inside the Build Process
The WiX extension to Visual Studio collects project information and passes it to the WiX compiler. The WiX compiler is named candle.exe. The information is passed on the command line as a series of preprocessor definitions, that is, name value pairs. To see this information in the Output window, you must set the MSBuild verbosity switch to minimal or higher.
To set MSBuild verbosity
1.	In Visual Studio, on the Tools menu, click Options.
2.	Expand the Project and Solutions node, and then select Build and Run.
3.	Select a minimal or higher setting in the MSBuild project build output verbosity list.
4.	Click OK.
Rebuild the solution. In the Output window, you should see a group of lines that resemble these:
C:\Program Files (x86)\Windows Installer XML v3\bin\candle.exe -dDebug -d"DevEnvDir=C:\Program Files (x86)\Microsoft Visual Studio 9.0\Common7\IDE\\" -dSolutionDir=D:\WixTutorial\ -dSolutionExt=.sln -dSolutionFileName= WixTutorial.sln -dSolutionName= WixTutorial -dSolutionPath=D:\WixTutorial\InstallPackage.sln -dConfiguration=Debug -dOutDir=bin\Debug\ -dPlatform=x86 -dProjectDir=D:\WixTutorial\InstallPackage\ -dProjectExt=.wixproj -dProjectFileName=InstallPackage.wixproj -dProjectName=InstallPackage -dProjectPath=D:\WixTutorial\InstallPackage\InstallPackage.wixproj -dTargetDir=D:\WixTutorial\InstallPackage\bin\Debug\ -dTargetExt=.msi -dTargetFileName=InstallPackage.msi -dTargetName=InstallPackage -dTargetPath=D:\WixTutorial\InstallPackage\bin\Debug\InstallPackage.msi -dHelloWorld.Configuration=Debug -d"HelloWorld.FullConfiguration=Debug|Any CPU" -d"HelloWorld.Platform=Any CPU" -dHelloWorld.ProjectDir=D:\WixTutorial\HelloWorld\ -dHelloWorld.ProjectExt=.csproj -dHelloWorld.ProjectFileName=HelloWorld.csproj -dHelloWorld.ProjectName=HelloWorld -dHelloWorld.ProjectPath=D:\WixTutorial\HelloWorld\HelloWorld.csproj -dHelloWorld.TargetDir=D:\WixTutorial\HelloWorld\bin\Debug\ -dHelloWorld.TargetExt=.exe -dHelloWorld.TargetFileName=HelloWorld.exe -dHelloWorld.TargetName=HelloWorld -dHelloWorld.TargetPath=D:\WixTutorial\HelloWorld\bin\Debug\HelloWorld.exe -out obj\Debug\Product.wixobj -arch x86 Product.wxs
You can see that the WiX compiler candle.exe is invoked together with a series of preprocessor variables and preprocessor project variables that have the form:
-dVariableName=VariableValue
The “-d” prefix creates a definition. For example,
-dConfiguration=Debug
means that the WiX project configuration is set to Debug and
-dHelloWorld.Configuration=Debug
means that the HelloWorld project configuration is set to Debug.
The input to the candle.exe compiler is the Product.wxs WiX source file, and the output is the \obj\Debug\Product.wixobj WiX object file.
The output from the candle.exe compiler is passed to a WiX linker named light.exe. You can see this in the Output window immediately following the light.exe command:
C:\Program Files (x86)\Windows Installer XML v3\bin\Light.exe
 -out D:\ WixTutorial \InstallPackage\bin\Debug\InstallPackage.msi
-pdbout D:\ WixTutorial \InstallPackage\bin\Debug\InstallPackage.wixpdb obj\Debug\Product.wixobj
The output of the light.exe linker is the InstallPackage.msi installation package. The linker also emits a file of special information named InstallPackage.wixpdb.
See Also
For additional documentation see the WiX.chm file.
For an example of WiX deployment of a complete application, see the Product.wxs and Integration.wxs files of the IronPython Setup sample. This sample is available in the Visual Studio Extensibility section of MSDN Code Gallery.

[bookmark: _Toc210113840][bookmark: _Toc210728718]
MS Build 4.0
This section contains the following walkthroughs.
· Walkthrough: How to Create a Custom Platform
· Walkthrough: How to Create an Inline Task
· Walkthrough: How to Create Custom Property Pages
· Walkthrough: How to Use the C++ MSBuild Project System

[bookmark: _Walkthrough:_How_to_8][bookmark: _Toc210728719]Walkthrough: How to Create a Custom Platform
Introduction
Visual Studio 2010 provides a new project system for Visual C++ projects that is based on MSBuild. The new project system allows you to create custom platforms that appear in the Solution Platforms dropdown box.
Custom platforms let you create a project that has a custom build process. This build process can interact with a collection of specialized tools tailored to the platform.
In this walkthrough, you will create a custom platform for the fictitious Contoso company. You will learn to:
· Enable the MSBuild project system.
· Create a custom toolset.
· Customize the build.
· Create a project and build it on the custom platform.
Enabling the MSBuild project system
To follow the steps in this walkthrough, you must enable the Visual C++ MSBuild project system. If the MSBuild project system is already enabled, you can skip this section.
To enable the MSBuild project system
1.	Click the Start menu and then click All Programs.
2.	Click Microsoft Visual Studio v10.0 to expand it, then click Visual Studio Tools. Right-click Visual Studio 10.0 Command Prompt, then click Run as administrator.
3.	When you see the UAC dialog, click Continue.
4.	From the command prompt, navigate to the folder where you installed Visual Studio, typically C:\.Program Files\Microsoft Visual Studio 10.0\.
5.	Navigate to the subfolder Common7\IDE.
6.	Run the command
NewVcProjectSystem.cmd

When the command completes, you will see the message Done.
Note If another instance of Visual Studio is running on the machine, this command will fail. If the machine is running Terminal Services, there may be several instances of Visual Studio open.
Instructions: Creating a new Toolset
You can use the Win32 toolset as a model from which to create a custom toolset.
To create a new toolset
1.	Change directory to the MSBuild platform directory:
cd %programfiles%\MSBuild\Microsoft.Cpp\v4.0\Platforms\
2.	Create a copy of the Win32 directory called ContosoPlat at this location:
xcopy Win32 ContosoPlat
3.	Delete the files pertaining to v90 toolset configurations, as the ContosoPlat platform will only have one toolset version:
cd ContosoPlat
del *v90*
4.	Rename the remaining ContosoPlat platform files, removing Win32 from their names, replacing each instance with the name of the new custom platform: ContosoPlat. Also rename the toolset version in the filenames from v100 to ContosoToolset, as highlighted below:
cd ContosoPlat
ren microsoft.cpp.Win32.default.settings microsoft.cpp.ContosoPlat.default.settings
ren microsoft.cpp.Win32.settings microsoft.cpp.ContosoPlat.settings
ren microsoft.cpp.Win32.targets microsoft.cpp.ContosoPlat.targets
ren microsoft.cpp.Win32.v100.settings microsoft.cpp.ContosoPlat.ContosoToolset.settings
ren microsoft.cpp.Win32.v100.targets microsoft.cpp.ContosoPlat.ContosoToolset.targets

The Win32 PlatformToolSet value defaults to v100 if no value is already set and if there is no fall back value in the system registry. The ContosoPlat platform will only support a value of ContosoToolset.
5.	Open microsoft.cpp.ContosoPlat.default.settings, and add a PlatformToolset element, as shown below. You can optionally remove the other content from the file.
<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
 <PropertyGroup>
 <PlatformToolset>ContosoToolset</PlatformToolset>
 </PropertyGroup>
</Project>
6.	Remove the PlatformToolSet property in microsoft.cpp.ContosoPlat.ContosoToolset.settings.
<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
 <PropertyGroup>
 <VCInstallDir>$(Registry:HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\VisualStudio\10.0\Setup\VC@ProductDir)</VCInstallDir>
...
 </PropertyGroup>
</Project>

Throughout the settings and target files in the ContosoPlat directory, references to the platform directory are hardcoded as Win32. These instances must be renamed to ContosoPlat. Also, references to the platform files are still using win32 in their names. These must be updated to reference “ContosoPlat” too.
7.	Open each of the files in the table below. Execute a find and replace for:
a.	Replace “\Win32\” with “\ContosoPlat\”.
b.	Replace “cpp.Win32” with “cpp.ContosoPlat”.
	File

	ContosoPlat\microsoft.cpp.ContosoPlat.settings

	ContosoPlat\microsoft.cpp.ContosoPlat.targets

	ContosoPlat\microsoft.cpp.ContosoPlat.ContosoToolset.settings

Customizing the Build
We need to modify some of the build targets to user the custom platform.
To customize the build
1.	Open the Microsoft.CPP.ContosoPlat.ContosoToolset.targets file.
2.	Add the following ContosoPlatMessage target. The target is both ContosoPlat platform specific and particular to the ContosoToolset version:
<Project ToolsVersion="4.0"
 xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
 <Target Name="ContosoPlatMessage">
 <Message Importance="High" Text="This build was performed on the ContosoPlat Platform. Toolset: $(PlatformToolset)"></Message>
 </Target>
</Project>
3.	Add the following to the very end of the CLCompile target in microsoft.cpp.ContosoPlat.targets.
 ...
 </CL>
 <CallTarget Condition="'$(Platform)' == 'ContosoPlat'" Targets="ContosoPlatMessage">
 </CallTarget>
</Target>
...
Creating a project that uses the new platform
Now that you have a custom platform toolset, create a new project and build it on the new platform.
To create a project that uses the new platform
1.	Open Visual Studio 2010.
2.	Create a new Visual C++ Win32 Console Application named ContosoPlatApplication.
3.	Click OK.
4.	Select Finish on the first page of the wizard.
5.	Drop down the Solution Platform Combo box on the Standard Toolbar.
6.	Choose Configuration Manager to launch the configuration manager dialog.
7.	Select the Active Solution Platform combo box in the Configuration Manager.
8.	Choose New…
9.	Select the ContosoPlat Platform that has been auto discovered from its location on disk.
10.	Choose to Copy settings from <empty>. In the Visual Studio 2010 CTP version, copying settings from existing platforms is not yet implemented.
11.	Check Create new solution platforms.
12.	Click OK.
13.	Select the Platform drop down in the Project Contexts Grid for ContosoPlat Application.
14.	Ensure that both Release and Debug Configurations are targeting ContosoPlat and that they are set to build.
15.	Click OK.
Adding Configuration Properties to the Project File
Currently the project will not build because it is missing requisite default configuration values. It is not yet possible copy these properties from existing configurations as this feature is not yet implemented in Visual Studio 2010 CTP. Instead it is necessary to add these values to the vcxproj file manually.
To add default configuration properties to the project file
1.	Unload the ContosoPlatApplication project.
2.	Edit the ContosoPlatApplication project file.
3.	Find the following CLCompile element in the ContosoPlatApplication project file:
<ClCompile Include="stdafx.cpp">
 <PrecompiledHeader Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">Create</PrecompiledHeader>
 <PrecompiledHeader Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">Create</PrecompiledHeader>
</ClCompile>

4.	Add two more PreCompiledHeader child elements to the CLCompile element. The new PreCompiledHeader elements are enabled when the Platform property value is "ContosoPlat". This ensures that precompiled headers are created for stdafx.cpp when the project is built against the ContosoPlat platform with either debug or release configurations.
<ClCompile Include="stdafx.cpp">
 <PrecompiledHeader Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">Create</PrecompiledHeader>
 <PrecompiledHeader Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">Create</PrecompiledHeader>
 <PrecompiledHeader Condition="'$(Configuration)|$(Platform)'=='Debug|ContosoPlat'">Create</PrecompiledHeader>
 <PrecompiledHeader Condition="'$(Configuration)|$(Platform)'=='Release|ContosoPlat'">Create</PrecompiledHeader>
</ClCompile>

Be sure the PrecompileHeader starting tag, content, and ending tag are on the same line. Remove any leading or trailing white space around the word "Create".
It is also necessary to set up some additional properties.
5.	Find the PropertyGroup element containing CharacterSet and LinkIncremental properties for win32 platforms in debug and release configurations.
6.	Add the flowing PropertyGroup elements immediately afterwards in the file:
 <PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|ContosoPlat'">
 <CharacterSet>Unicode</CharacterSet>
 <LinkIncremental>true</LinkIncremental>
 </PropertyGroup>
 <PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|ContosoPlat'">
 <CharacterSet>Unicode</CharacterSet>
 <LinkIncremental>true</LinkIncremental>
 </PropertyGroup>
7.	Add the following ItemDefinitionGroup elements to the end of the project file, just before the </Project> closing tag:
 <ItemDefinitionGroup Condition="'$(Configuration)|$(Platform)'=='Debug|ContosoPlat'">
 <ClCompile>
 <PrecompiledHeader>Use</PrecompiledHeader>
 <WarningLevel>Level3</WarningLevel>
 <MinimalRebuild>true</MinimalRebuild>
 <DebugInformationFormat>EditAndContinue</DebugInformationFormat>
 <Optimization>Disabled</Optimization>
 <BasicRuntimeChecks>EnableFastChecks</BasicRuntimeChecks>
 <RuntimeLibrary>MultiThreadedDebugDLL</RuntimeLibrary>
 <PreProcessorDefinitions>
 _UNICODE;UNICODE;WIN32;_DEBUG;_CONSOLE;%(PreProcessorDefinitions)
 </PreProcessorDefinitions>
 </ClCompile>
 <Link>
 <SubSystem>Console</SubSystem>
 <TargetMachine>MachineX86</TargetMachine>
 <GenerateDebugInformation>true</GenerateDebugInformation>
 </Link>
 </ItemDefinitionGroup>
 <ItemDefinitionGroup Condition="'$(Configuration)|$(Platform)'=='Release|ContosoPlat'">
 <ClCompile>
 <WarningLevel>Level3</WarningLevel>
 <PrecompiledHeader>Use</PrecompiledHeader>
 <DebugInformationFormat>ProgramDatabase</DebugInformationFormat>
 <Optimization>MaxSpeed</Optimization>
 <RuntimeLibrary>MultiThreadedDLL</RuntimeLibrary>
 <FunctionLevelLinking>true</FunctionLevelLinking>
 <IntrinsicFunctions>true</IntrinsicFunctions>
 <PreProcessorDefinitions>
 _UNICODE;UNICODE;WIN32;NDEBUG;_CONSOLE;%(PreProcessorDefinitions)
 </PreProcessorDefinitions>
 </ClCompile>
 <Link>
 <SubSystem>Console</SubSystem>
 <TargetMachine>MachineX86</TargetMachine>
 <GenerateDebugInformation>true</GenerateDebugInformation>
 <EnableCOMDATFolding>true</EnableCOMDATFolding>
 <OptimizeReferences>true</OptimizeReferences>
 </Link>
 </ItemDefinitionGroup>
8.	Reload the ContosoPlatApplication project.
Testing the custom platform
Now that the custom platform, toolset, and project file are in place, let's create an application to test the custom platform. When the Contoso platform is selected, the conditionals in the project file alter the build process to run the ContosoPlatMessage task. This task displays a line in the Output Window that indicates that all is well.
To test the custom platform
1.	Select the release configuration in the Solution Configurations combo box on the Standard Toolbar.
2.	Drop down the Solution Platforms combo box on the Standard Toolbar
3.	Choose Configuration Manager to launch the configuration manager dialog.
4.	Ensure that ContosoPlatApplication is building against the ContosoPlat configuration.
5.	Build the project.
6.	Find the following line in the Build pane of the Output Window:
This build was performed on the ContosoPlat Platform. Toolset: ContosoToolset

This confirms that the build process successfully targeted the ContosoPlat platform.
You can perform the same build from the command line using the following command, executed from the directory containing the ContosoPlatApplication project file.
msbuild /property:configuration=release;platform=ContosoPlat /t:Rebuild
7.	Repeat the above steps with the Solutions Platforms set to Win32.
The ContosoPlat message does not appear.

[bookmark: _Walkthrough:_How_to_9][bookmark: _Toc210728720]Walkthrough: How to Create an Inline Task
Introduction
Visual Studio 2010 provides a new project system for Visual C++ projects that is based on MSBuild. The new project system allows you to create inline tasks that you can add to the build process without having to create a binary task.
In this walkthrough, you add an inline task to an existing C++ application that informs you by email when the project build is complete. You will learn to:
· Enable the MSBuild project system.
· Create an inline task.
· Create a target for this task.
· Import this target into a project file.
Getting Started
To follow the steps in this walkthrough, you must first complete the walkthrough Creating Custom Property Pages. Completing this walkthrough enables the Visual C++ MSBuild project system and provides you with a custom property page. This property page sets properties in the project file which you can use to control an inline task.
Creating an Inline Task
To create an inline task
1.	Open Visual Studio 2010.
2.	Open the SimpleConsoleApp project you created in the walkthrough Creating Custom Property Pages.
3.	Locate the Visual C++ project sample Scribble.
4.	Copy these files from the Scribble sample to the SimpleConsoleApp project folder located, for example, at D:\SimpleConsoleApp:
· Microsoft.Build.Engine.dll
· Microsoft.Build.Engine.Unittest.dll
· Microsoft.Build.Framework.dll
· Microsoft.Build.Utilities.v3.5.dll
These binaries implement the task factory that creates inline tasks.
5.	Add a new XML file to this project named EmailTask.targets.
6.	Replace the content of this file with the following code:
<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
 <PropertyGroup>
 <EmailTaskName>EmailTask</EmailTaskName>
 </PropertyGroup>
 <UsingTask TaskName="$(EmailTaskName)"
 TaskFactory="Microsoft.Build.UnitTests.BackEnd.CodeTaskFactory"
 AssemblyFile=".\Microsoft.Build.Engine.UnitTest.dll" >
 <ParameterGroup>
 <ToAddress Required="true"/>
 <IsBodyHtml ParameterType="System.Boolean"/>
 <Body/>
 </ParameterGroup>
 <Task>
 <CodeFactory>
 <Using Namespace="System.Net.Mail"/>
 <Reference Include="System.dll"/>
 <Code>
<![CDATA[
if (Body == null)
{
 Body = string.Empty;
}
string FromAddress = "YourFromEmailAddress";
string Subject = "Automated Build Message";

Log.LogMessage(String.Format("ToAddress={0}", ToAddress));
Log.LogMessage(String.Format("FromAddress={0}", FromAddress));
Log.LogMessage(String.Format("Subject={0}", Subject));
Log.LogMessage(String.Format("Body={0}", Body));
Log.LogMessage(String.Format("IsBodyHtml={0}", IsBodyHtml));try
{
 MailMessage message =
 new MailMessage(FromAddress, ToAddress, Subject, Body)
 message.IsBodyHtml = IsBodyHtml;

 SmtpClient client =
 new SmtpClient("YourSmtpServer");
 client.UseDefaultCredentials = true;
 client.Send(message
 Log.LogMessage(String.Format("Message sent to '{0}'.", ToAddress));
}
catch (SmtpException ex)
{
 Log.LogError(String.Format("Error sending email: {0}", ex.Message));
}
]]>
 </Code>
 </CodeFactory>
 </Task>
 </UsingTask>

 <Target Name="SendPostBuildMail" AfterTargets="Build">
 <EmailTask
 ToAddress="$(ToAddress)"
 Body="\\$(ComputerName)\d$\$(MSBuildProjectDirectoryNoRoot)\$(OutputPath)"/>
 </Target>
</Project>

7.	Save the changes to the EmailTask.targets file.
The PropertyGroup and UsingTask elements define the task EmailTask. UsingTask has two child elements that further define the task: ParameterGroup and Task. The ParameterGroup describes the three parameters to EmailTask:
· ToAddress, which is a required string parameter that specifies the To: email address.
· IsBodyHtml, which is an optional boolean parameter that is true if the body of the email is in HTML format.
· Body, which is the body of the email.
The task itself is defined in the body of the Task element. The code that implements the task appears in a CDATA section in the body of the Code element.
Note In the Visual Studio 2010 CTP release, you must write the code in the Visual C# language.
Task code may depend on external namespaces and assemblies. You can have any number of Using elements to describe the namespaces, and any number of Reference elements to specify the assemblies.
The Target element SendPostBuildMail sets the parameters to EmailTask and invokes the task. The ToAddress parameter is set to the value of the ToAddress property, which must be defined when the project is built. This value is typically set in the project file by the Email custom property page created in the walkthrough Creating Custom Property Pages.
The AfterTargets attribute of the Target element invokes EmailTask when the project build is complete. The body of the EmailTask sends email via the SMTP server. You must modify this code to conform to the expectations of your SMTP server.
Note Windows Vista ships without an SMTP server. You can install a third party SMTP client and relay the email through localhost, or you can relay the email remotely through an external SMTP server.
Note The Visual Studio 2010 CTP release ships as a virtual PC image without network connection by default. You cannot send email from this release.
The Local Windows Debugger is not available to debug inline tasks. You cannot breakpoint or step through the inline code. You can, however, trace the code with the Log method. The output of this method appears in the Output Window if you have the verbosity of the MSBuild system set to detailed or diagnostic.
To set the MSBuild verbosity
· In Visual Studio, on the Tools menu, click Options.
· Expand the Project and Solutions node, and then select Build and Run.
· Select the verbosity from the MSBuild project build output verbosity list.
· Click OK.
Importing the Email Target
Now that you have defined the email target SendPostBuildEmail, you can import it into your project file. Because of the AfterTargets attribute in the Target element, MSBuild will run SendPostBuildEmail automatically when the project is built.
To import the Email target
1.	Right-click the SimpleConsoleApp project node in the Solution Explorer and select Unload Project. If asked to save the solution, click Yes.
2.	Right-click the project node again and select, for example, Edit SimpleConsoleApp.vsxproj. The project file appears in the XML editor.
3.	Add this code to the project file, just before the </Project> closing tag:
<Import Project="./EMailTask.targets" />
4.	Close the project file.
5.	Right-click the project node in the Solution Explorer and click Reload Project.
Testing the Email Target
Before sending an email, you must set the ToAddress build property to your To: email address.
To set the To: email address
1.	In the Solution Explorer, right-click the project node and click Properties.
2.	The Property Pages dialog appears.
3.	In the list of Configuration Properties, click Email Property Page.
4.	Email properties appear in the right-hand pane. All property values are currently blank.
5.	Change the To Address property value to your To: email address.
6.	Click OK to close the Property Pages dialog.
Alternately, you can define or redefine the ToAddress, Body, or IsBodyHtml build properties in the project file, instead of using the values set from the Email custom property page. To redefine ToAddress, for example, replace the line
<Import Project="./EMailTask.targets" />

with this group of lines:
<PropertyGroup>
 <ToAddress>YourToEmailAddress</ToAddress>
</PropertyGroup>
<Import Project="./EMailTask.targets" />

To test the Email target
1.	Rebuild the project.
2.	Check the Output Window for lines like these:
Target SendPostBuildMail:
 Initializing task factory "Microsoft.Build.UnitTests.BackEnd.CodeTaskFactory" from assembly "D:\SimpleConsoleApp\.\Microsoft.Build.Engine.UnitTest.dll".
 Using "EmailTask" task from the task factory "Code Task Factory".
 Task "EmailTask"
 ToAddress=YourToEmailAddress
 FromAddress=YourFromEmailAddress
 Subject=Automated Build Message
 Body="\\YOURMACHINE\d$\SimpleConsoleApp\Debug\"
 IsBodyHtml=False
 Message sent to 'YourEmailAddress'.

If the email was not sent, you will see an email failure message instead.

[bookmark: _Walkthrough:_How_to_10][bookmark: _Toc210728721]Walkthrough: How to Create Custom Property Pages
Introduction
Visual Studio 2010 provides a new project system for Visual C++ projects that is based on MSBuild. The new project system lets you create custom property pages that appear in the Property Pages dialog box for the current project. You can use these property pages to get and set properties for your application. The property values are saved in the MSBuild project file.
This walkthrough shows how to accomplish these tasks:
· Enable the MSBuild project system.
· Create a custom property page.
· Get and set properties in the custom property page.
· Examine the property values in the MSBuild project file.
Enabling the MSBuild Project System
To follow the steps in this walkthrough, you must enable the Visual C++ MSBuild project system. If the MSBuild project system is already enabled, you can skip this section.
To enable the MSBuild project system
1.	On the Start menu, click All Programs, click Microsoft Visual Studio v10.0, and then click Visual Studio Tools. Right-click Visual Studio 10.0 Command Prompt, and then click Run as administrator.
2.	When you see the user account control (UAC) dialog box, click Continue.
3.	At the command prompt, locate the folder where you installed Visual Studio, typically C:\.Program Files\Microsoft Visual Studio 10.0\.
4.	Locate the subfolder \Common7\IDE\.
5.	Run the command
NewVcProjectSystem.cmd

When the command is finished, the message Done is displayed.
Note If another instance of Visual Studio is running on the computer, this command will fail. If the computer is running Terminal Services, several instances of Visual Studio may be open.
Creating a Custom Property Page
In this section, you use Notepad to create an XML file that describes a custom property page. You add this XML file to a collection of existing property page XML descriptions at a location that is known to the MSBuild project system. This location is a subfolder of the \Program Files\ folder.
Note On a 64-bit computer, this location is a subfolder of the \Program Files (x86)\ folder.
To create a file by using Notepad and save it to the \Program Files\ folder, you must be running Notepad as an administrator.
If the Visual Studio Command Prompt window that you used in the earlier section is still open, you can just type Notepad and then press ENTER. Otherwise, start Notepad as follows.
To run Notepad as administrator
· On the Start menu, click All Programs and then click Accessories. Right-click Notepad and then click Run as administrator.
The Notepad editor appears.
To create a custom property page
1.	In Notepad, type or paste the following code:
<?xml version="1.0" encoding="utf-8"?>
<Rule Name="EmailPropertyPage" PageTemplate="tool" SwitchPrefix="/" xmlns="clr-namespace:Microsoft.VisualStudio.CommonProject.PropertyPages.Schema;assembly=Microsoft.VisualStudio.CommonProject.Components.Impl" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" xmlns:sys="clr-namespace:System;assembly=mscorlib" xmlns:my="http://schemas.microsoft.com/developer/msbuild/tasks/2005" DisplayName="Email Property Page">

 <Rule.DataSource>
 <DataSource Persistence="ProjectFile" HasConfigurationCondition="false" />
 </Rule.DataSource>

 <StringProperty Name="PhoneNumber" Category="General" DisplayName="Phone Number" Description="Contains the phone number of the recipient of the post build e-mail" />

 <EnumProperty Name="Provider" Category="General" DisplayName="Wireless Provider" Description="Wireless provider for above phone number">
 <EnumValue DisplayName="Email Address" Name=""/>
 <EnumValue DisplayName="AT&T" Name="txt.att.net" />
 <EnumValue DisplayName="Nextel" Name="messaging.nextel.com" />
 <EnumValue DisplayName="Sprint" Name="sprintpaging.com"	/>
 <EnumValue DisplayName="T-Mobile" Name="tmomail.net" />
 <EnumValue DisplayName="Verizon" Name="myvzw.com" />
 </EnumProperty>

 <StringProperty Name="ToAddress" Category="General" DisplayName="To Address" Description="Contains the email address of the recipient of the post build e-mail" />

</Rule>

This code describe a custom property page named Email Property Page. This property page contains these three properties:
· A string property named Phone Number.
· An enumerated data constant property named Wireless Provider.
· A string property named To Address.
2.	On the File menu, click Save. In the Save File As dialog box, locate the C:\Program Files\MSBuild\Microsoft.Cpp\v4.0\ folder. Name the new file EmailPropertyPage.xml, and then click Save.
3.	Close Notepad.
Using the Custom Property Page
Now that you have a custom property page, you can display it in the Visual Studio Property Pages dialog box. The custom property page can be used to get and set custom properties in any project. You must have a project visible in Solution Explorer to see the Property Pages dialog box.
To use the custom property page
1.	In Visual Studio, open an existing Visual C++ project, or create a Visual C++ project.
2.	In Solution Explorer, right-click the project node and then click Properties.
The Property Pages dialog box appears.
3.	Under Configuration Properties, click Email Property Page.
4.	Email properties appear in the pane to the right. All property values are currently blank.
5.	Click the Wireless Provider property.
The description at the bottom of the right pane changes to Wireless Provider for above phone number. This matches the property description in the EmailPropertyPage.xml file that you created earlier.
6.	Click the property value field to the right of the Wireless Provider property name.
A down arrow for the list of available values appears.
7.	Click the arrow.
The list of wireless providers appears.
8.	To select a wireless provider, click its name, for example, Sprint.
9.	Click OK to apply the changes and close the Property Pages dialog box.
Examining Properties in the Project File
The wireless provider property value that you set in the earlier section is persisted in the MSBuild project file. Project file properties are available to the MSBuild system tasks when the project is built. For more information about MSBuild properties, see MSBuild Properties.
To examine properties in the project file
1.	Right-click the project node in Solution Explorer and then click Unload Project. If you are asked to save the solution, click Yes.
2.	Right-click the project node again and then click, for example, Edit SimpleConsoleApp.vsxproj. The project file appears in the XML editor.
3.	Locate the PropertyGroup element that contains the Provider element. It resembles this:
<PropertyGroup>
 <ConfigurationType>Application</ConfigurationType>
 <TargetName>SimpleConsoleApp</TargetName>
...
 <Provider>sprintpaging.com</Provider>
</PropertyGroup>

For more information about the format of an MSBuild project file, see MSBuild Project File Schema Reference.
Notice that the value of the Provider element is sprintpaging.com. This value is determined by the EnumProperty element named Provider in the EmailPropertyPage.xml file. The Name attribute of the EnumValue child element that has the DisplayName Sprint is sprintpaging.com. Here is the relevant line of the EmailPropertyPage.xml file:
<EnumValue DisplayName="Sprint" Name="sprintpaging.com" />
4.	Close the project file.
5.	Right-click the project node in Solution Explorer and then click Reload Project.
6.	Close Visual Studio.

[bookmark: _Walkthrough:_How_to_11][bookmark: _Toc210728722]Walkthrough: How to Use the C++ MSBuild Project System
Introduction
Visual Studio 2010 provides a new project system for Visual C++ projects that is based on MSBuild. MSBuild provides the same rich and flexible build system that is used by Visual C# and Visual Basic projects. For more information on MSBuild, see MSBuild.
If you have a Visual C++ project created in Visual Studio 2008, you can upgrade your project to the MSBuild project system by following the steps in this walkthrough.
You will learn to:
· Enable the MSBuild project system.
· Update an existing project to use the MSBuild project system.
· Modify an existing solution to use MSBuild-based projects.
· Examine the MSBuild project file.
· Test the updated project.
Getting Started
To follow this walkthrough, you must have an existing Visual C++ project created in Visual Studio 2008. If you don't have an existing project, you can create one in Visual Studio 2008 this way.
To create a Visual C++ project in Visual Studio 2008
1.	Open Visual Studio 2008.
2.	Create a new Visual C++ Win 32 Console Application named SimpleConsoleApp and save it in a known location, for example, D:\SimpleConsoleApp.
3.	Replace the contents of the SimpleConsoleApp.cpp file with the following code:
#include "stdafx.h"
#include <iostream>
using namespace std;

int _tmain(int argc, _TCHAR* argv[])
{
 printf("hello world\n");
 char ch = getchar();
 return 0;
}
Note Try typing in the above code instead of pasting it in. Intellisense provides you with hints and auto completion for each method.
4.	Compile and run the solution and verify that the hello world message appears in the console window. Press any key to close the window.
5.	Close Visual Studio 2008.
Updating a C++ project to the MSBuild project system
By default, the Visual C++ MSBuild project system is disabled. You must explicitly enable the MSBuild project system.
To enable the MSBuild project system
1.	Click the Start menu and then click All Programs.
2.	Click Microsoft Visual Studio v10.0 to expand it, then click Visual Studio Tools. Right-click Visual Studio 10.0 Command Prompt, then click Run as administrator.
3.	When you see the UAC dialog, click Continue.
4.	From the command prompt, navigate to the folder where you installed Visual Studio, typically C:\.Program Files\Microsoft Visual Studio 10.0\.
5.	Navigate to the subfolder Common7\IDE.
6.	Run the command
NewVcProjectSystem.cmd

When the command completes, you will see the message Done.
Note If another instance of Visual Studio is running on the machine, this command will fail. If the machine is running Terminal Services, there may be several instances of Visual Studio open.
Now that you have enabled the Visual C++ MSBuild project system, you can update your existing Visual C++ project to use the new project system.
To update a C++ project to the new project system
1.	From the command prompt, navigate to the folder containing the existing Visual C++ project, for example, SimpleConsoleApp.
2.	Run the vcupgrade command, followed by the name of the existing project file. Be sure to include the project file extension:
vcupgrade SimpleConsoleApp.vcproj
3.	When the command completes, you will see that a new project file has been created with the same name, but with the file extension .vcxproj, for example, SimpleConsoleApp.vcxproj.
Note The vcupgrade command only converts one project file. If you have a solution with multiple project files, you will have to convert them one at a time.
4.	Close the command dialog box.
Once you have migrated your project or projects, you must modify your Visual Studio solution, if any, to use the new projects.
To modify a C++ solution to use MSBuild projects
1.	Open Visual Studio 2010.
2.	Point to the File menu, click Open, then click File.
The Open File dialog appears.
3.	Navigate to and select your solution file, for example, SimpleConsoleApp.sln.
4.	Click the down arrow on the Open button, then click Open With. Select the Source Code (Text) Editor and click OK.

The solution file appears in the source code editor.
5.	At the top of the solution file, change the Format Version to 11.00.
6.	For each project that you upgraded, change the .vcproj extension of the file name to .vcxproj.
7.	Save and close the solution file.
To examine the modified project file
1.	From Visual Studio, open the modified Visual C++ solution.
2.	Right-click the project node in the Solution Explorer and select Unload Project. If asked to save the solution, click Yes.
3.	Right-click the project node again and select, for example, Edit SimpleConsoleApp.vsxproj. The project file appears in the XML editor.
The project file shows the familiar XML format of an MSBuild file. The start of the MSBuild file looks something like this:
<Project DefaultTargets="Build" ToolsVersion="4.0" xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
 <ItemGroup>
 <ProjectConfiguration Include="Debug|Win32">
 <Configuration>Debug</Configuration>
 <Platform>Win32</Platform>
 </ProjectConfiguration>
 <ProjectConfiguration Include="Release|Win32">
 <Configuration>Release</Configuration>
 <Platform>Win32</Platform>
 </ProjectConfiguration>
 </ItemGroup>

See the MSBuild Project File Schema Reference for more detail.
4.	Close the project file.
5.	Right-click the project node in the Solution Explorer and click Reload Project.
To test the updated project
1.	If your solution has more than one updated project, select one as the startup project.
2.	From Visual Studio, rebuild the solution and launch it. If asked if you would like to build the project, click Yes.
3.	After a moment, your application should run. Verify that it runs as expected.
4.	Close your application.
5.	Close Visual Studio 2010.
Congratulations! You have updated your Visual C++ project to use the new MSBuild project system. You can leave the MSBuild project system enabled, or you can disable it.
To disable the MSBuild project system.
1.	Click the Start menu and then click All Programs.
2.	Click Microsoft Visual Studio v10.0 to expand it, then click Visual Studio Tools. Right-click Visual Studio 10.0 Command Prompt, then click Run as administrator.
3.	When you see the UAC dialog, click Continue.
4.	From the command prompt, navigate to the folder where you installed Visual Studio, typically C:\.Program Files\Microsoft Visual Studio 10.0\.
5.	Navigate to the subfolder Common7\IDE.
6.	Run the command.
OldVcProjectSystem.cmd

When the command completes, you will see the message Done.
7.	Close the command dialog box.
Note The Visual C++ MSBuild project system supports file filter folders. There is no change in how to create or use these virtual folders to organize files.

September 2008 	Microsoft® Corporation	210
image75.png
2ol

~IghiSe

[

Code Analysis

Publish

Servers

9] Apply server settings to all users (store in projectfile)

Use Visus! Studio Development Server Ve =

(@) et arectonywas crste suscesty

Virtual path i

(@ use Local T Wb server

ProjectUnl: http://localhost/MyWebPagesStarterkit_Netdd Create Virtual Directory

Override application root URL

image76.png
ct Buld Debug Data Taols Test Anabze Windo
- IRV AN R L
Start Page|

2 MyWebPagesStarterkit_Netdd
Microsoft® Praperts

Visual Studio 2010

Welcome @&
r

Projects CTP Walkthroughs Feedback Customize the
Start Page

Visual Studio

Welcome to the Visual Studio 2010 CTP

“This Community Technology Preview contains many features new to Visual Studio. We have created angePa:
a set of walkthroughs for major new feature areas. We would also appreciate hearing your feedback. Defaultasy
Thank you for taking the time to evaluate and provide your input; it will help us make Visual Studio v

2010 the best release ever.

More Information
9 Secton:

] Stermaster
3 webicontig

. = v @0 MyWebPagesStarter.

image77.png
|xoai00] &3¢

|581445 abeuE 4 Saadold 550 [

~ MyWebPagesStarter

EHd| e

Appli

Build

cation

Build MyWiebPage:Starterkt_Netdd
Rebuild MyWiebPagesStarterkt Netdd

Clean MyWebPagesStarterkit Netd

Publish MyWebPages Starterkit Netd)

Run Cade Anslysis on MyWiebPagesStarterkt Netdd

e (Bny CPL)

C

] D)

Active solution platform;

EAgesstaterNetal

[y

ploy)

[cvanced

Platform
veng [=] anycru

Build

Close.

o]

A

ate Package

image78.emf

image79.png
Active solution configuration: Active solution platform;

soging] [eeyer

Debu
Seiens ploy)

PR [=] Anychu =

Build

Close.

image80.emf

image81.emf

image82.emf

image83.emf

image84.emf

image85.emf

image86.png
o | Rebuid

ol cen
2 b
o] | RunCoteAnas
o] | Comartoweb pptcatin
| @ Checkhccesbiny,
B cocmeCosewesie
|
Addeteerce.
0| A preence.
5| | Adaseice Rferece,

2 View Cus ingram

ol | oeu
1 68 AddPectto Source Conrl..
¥ cw

Rename
(5| Open Foderin Windows sporr

FReEPage ek csproy s

image87.png
il
Configuration| [Bctve oging) Plttor: [(ctive (iny CPL)
i

Exclude Generated Debug Symbols

Build Events
Resources Pre-compile Settings
Settings

Reference Paths MSDeploy Settings
Signing Package ltems
Web

Code Analysis

image88.png
Package Location;

((csmsngescase)

Destination IS Application Path

DefoultWeb Site/MyWebPagesStarterkit_Netdd_deploy.
Destination Application Physical Path:

Diishal\MyWebPages tarterkit_deploy

image89.png
K5 ()= |) DawvishahywebPagesstarterkitiobi\Staging!Package Prchivel ContentiD_CWishal\MyWebPages StarterkitiobjStagingPackagelPackage Tl

Favorite Links

) Documents
B Picures

B Music

More »

Folders

Users
%— Vishal
Ui MyWabPagesStrterkt

Ui Adminisration
Ul AppDits
Ui App_SlobalResources
Ui App_Themes
b tin
i Documentation
b EssyControls
i FrEDats
U Tmages
L obj
Ui Debug
U Relesse
i Staging
Ui Package
Ui Archive
Ui Content
Woc
i Vishal
Ui MyWabPagesStrterkt
U obj
Ui Staging
Ui Package

0 PackaseTmp

Name

3 Admiristraton

3 App_Data

Ji App_GlobalResources

3 App_Themes

Jibin

Ji Documentation

3 BayConrols

i Tmages

3} O1d_App_Code

) PopCalendar2005

3 SectionConirols

3 Siverlight

) AntBotimage.ashe
ChangePassword.aspx

Defaultaspe

) DownloadHandierashx

] GaleyUpload.ascx

e Globalasax

) imageHandlerashx
Loginaspx

B Loginsttussscx

[irobotsist
Searchaspe

B SearchLinkascx

) SectionRssashe

it master

Date modified
9/16/2008 6:32 PM
9/16/2008 6:32 PM
9/16/2008 6:32 PM
9/16/2008 6:32 PM
9/16/2008 6:32 PM
9/16/2008 6:32 PM
9/16/2008 6:32 PM
9/16/2008 6:33 PM
9/16/2008 6:33 PM
9/16/2008 6:33 PM
9/16/2008 6:33 PM
9/16/2008 6:33 PM
5/20/2008 4:48 PM
5/20/2008 4:48 PM
5/30/2008 3:42 PM
5/20/2008 4:48 PM
5/20/2008 4:47 PM
5/20/2008 4:48 PM
5/20/2008 4:48 PM
5/20/2008 4:48 PM
5/20/2008 4:48 PM
5/20/2008 4:48 PM
5/20/2008 4:48 PM
5/30/2008 3:26 PM
5/20/2008 4:48 PM
5/20/2008 4:40 PM

Type
File Folder

File Folder

File Folder

File Folder

File Folder

File Folder

File Folder

File Folder

File Folder

File Folder

File Folder

File Folder
ASP.NET Generic
ASP.NET Server Pa
ASP.NET Server Pa
ASP.NET Generic
ASP.NET User Can.
ASP.NET Server A,
ASP.NET Generic
ASP.NET Server Pa
ASP.NET User Can.
Text Dacument
ASP.NET Server Pa
ASP.NET User Can.
ASP.NET Generic
ASPNET Master P

Size

5K8
5K8
28
48
28
3K8
"8
48
1K8
1K8
3K8
1K8
3K8
1K8

Breeeers

971672008 6:32 P

XML Canfigaratio

e

image90.png
Solution Bxplorer <& X
El®

[T

Propertis

S References

(3 Administration

5 App_Data

4 App_GlobalResources

A App_Themes

abin

(3 Documentation

38 EssyControls

(1 FTEData

3 mages

3 Old_ppp_Code

3 PopClendsr20ls

3 SectionControls

2 Sveright

) AntiBotimage.sshx
ChangePsssword aspe

Defauitaspe

= DownlosdHandierashc

GalleryUplosd.asox

4 Globalssax

9 tmageandierashic
Loginaspe

LoginStstus asex
obots st

Searchaspe

Starterkit

Netdo

SearchLink.ascx
) Sectionas.ashx
] Siemaster

g Solution Explorer 55 Tearn Bxplorer [T Server Explarer

image91.png
MyWebPagesStarterkit Net40 | Start Page.

WA WA
Build
Build Events Assemblyname: Defaultnamespace
MyWebPagesStarterke
srget Framework
S NET Framewark 40 Class Library

Reference Paths

Mot sef ssembly Information.
Signing (otoe) Assembly Informati

Web Resources

Specify how application resaurces will be managed:
Code Analysis e g

Publish © Icon and manifest

A manifest determines specific settings for an application, To embed a custom manifest,fistadd itto
your project and then select it from the lst below.
Icon:

(DefaultIcon)

Embed manifest with default settings

Resource File

image92.png
7 MyWebPagesStarterkit_Netdd - Microsoft Visual Studio (Administrator)
File Edit View Project Buld Debug Data Taols Test Anabze Window Help

Edd > | M

55| MyWebPagesStarterKit Netd0 | SartPage |

s

Z|| | application

= Configuraton:[Bctve ey Plttor: [(ctive (iny CPL)
Settings [T Exclude files from the App_Data folder

Exclude Generated Debug Symbols
Reference Paths. 0 g%

Pre-compile Settings
Signing

[SOINS SUEUEW ag [SOmatiold S5O

Web

Conennily MSDeploy Settings

Package lterns

105 setings

Package Settings

reate MSDeploy package as a ZIP file

pe—
oDbug PackagWiWabPages St et =)
Destinatin IS Appcaton Pt

Dot Web S WsbPages St el deply

Destination Appication Pysia Pt

DVishaNWebProject deploy o

Create Package

Outpu]

image93.png
Platform:

Active (any CPU)

Application
@ﬂguva(mn ctive (Debug)
Build

D

Build Events Trems to Package or Publish
Resources Only files needed to run this application
Settings Exclude files from the App_Data folder

Exclude Generated Debug Symbols
Reference Paths e

Pre-compile Settings
Signing
Web

o MSDeploy Settings

Package lterns

image94.png
- <Project ToolsVersion="3.5" DefaultTargets="Build" xmins="http:/ /schemas.microsoft.com/develop

+ <PropertyGroup>
- <PropertyGroup Condition="§(Configuration)|$(Platform)" 7
<DebugSymbols>true </DebugSymbols>
<DebugType>full</DebugType>
<Optimize>false </Optimize>
<OutputPath>bin\ </OutputPath>
<DefineConstants>DEBUG;TRACE </DefineConstants>
<ErrorReport>prompt</ErorReport>
<WarningLevel>4 </WarningLevel>
</PropertyGroup>
- <PropertyGroup Condition="$(Configuration) | $(Platform)'
<DebugType>pdbonly</DebugType>
<Optimize>true </Optimize>
<OutputPath>bin\ </OutputPath>
<DefineConstants >TRACE </DefineConstants>
<ErrorReport>prompt</ErrorReport>
<WarningLevel>4 </WarningLevel>
</PropertyGroup>
<ItemGroup>
<ItemGroup>
<ItemGroup>
<ItemGroup>
<ItemGroup>
<ItemGroup>
<ItemGroup>
<Import Project="$(MSBuildBinPath)\Microsoft.CSharp.targets’ />
<Import Project="$(MSBuildExtensionsPath)\Microsoft\VisualStudio\v9.0\WebApplications\ i
b >
+ <ProjectExtensions>
</Project>

Gk

image95.png
Application

Buid
Build Events
Setings
Reference Paths
Signing

web

Code Arnalysis

Publish

Confguon: [Ache Goging

Platform:

Active (any CPU)

Items to Package or Publish

Only files needed to run this application

Exclude files from the App_Data folder

Exclude Generated Debug Symbols

Pre-compile Settings

MSDeploy Settings

Package lterns

image96.png
PPIESE

Configuration: (Active (Staging) ~) Platform: [Active (any CPU)

9] Define TRACE canstant

Buid Events
Platform target e)
R Loy Advanced Build Settings =
Allow unsafe code
Sttings General

Optimize code

P Language Version; default =
Errors and warnings —————
Internal Compler Error Reporting: [prampt. =

S Ut Check for arithmetic overflow/underflow
Web
Suppress warnings Do not reference mscorlib.dil
Code Analysis S — Output
Publish ~ Debug Infor
Specifiewanings File Alignment;
al DLL Base Address:
Output
Output path: bin

XML documentation file

Register for COM interap

Generate seraztion asemblys (207

Advanced,

image97.png
|

Publish

Configuration: [Active (Debug) ~] Pplatform: [active (any CPU) -

Build output path

bint

Compile Options
Optian plict

[—

Option campare:

Warning configura

Condition

Late binding; call |

Implicittype; obje
Use of variable pri
Function/Operato
Unused ocal vari
Instance varisble a
Recursive operator

Duplicate or overla

‘Advanced ComplerSetings
Optimizations
7] Remove integer overflow checks
DL base adress
Generate debug info

Compilation Canstants

Define DEBUG constant

Custom canstants

Example: Namel="Value1", Name2

Generate serialization assemblies:

7] Enable optimizations

&H00400000

b]

Nane

pdb-only
9] Uetiie 1 constant

alued’ Name3="Value3"

o

Target CPLL

ey

Target framewark (al configurations):

[T Fomeworka0

(7] Disable all warni

(7] Treat all warnin

Generate XML d

7] Registrfor COM

interop.

Advanced Compile Optians. .

image98.png
] 6AC assemblies
[] COM components

] Security certificates
[Registry settings

.

image99.png
Publish

Package Settings
9] Create MSDeploy package as a ZIP file

Package Location:

obj\DebughPackage\yWebPagesStarterkit Netdl.zip

Destination IS Application Path
DefoultWeb Site/MyWebPagesStarterkit_Netdd_deploy.

Destination Application Physical Path:
Diishal\WebProject_deploy

Create Package

image100.png
Application
Compile
References
Setings
Sgning

My Exensions
web

Code Analysis

Configuration|

Debug
Trems to Fhe Release

All Canfigurations
Only fi

Exclude files from the App_Data folder
Exclude Generated Debug Symbols

Pre-compile Settings

MSDeploy Settings

Package lterns

image101.png
Output
Show output from: Build =

USHSDeploy: Updaving filePach (D:\Users\FUTLABB\Documencs\Visual ¢
USHSDeploy: Updaving filePach (D:\Users\FUTLABB\Documents\Visual ¢
USHSDeploy: Deleving vircualDiractory (sivemani fest/appHostConfi|
USHSDeploy: Deleving virtualDirsctoryDefaults (sivemani fast/appHos
USHSDeploy: Deleving applicavion (sivemani fast/appHostContiylEpack
USHSDeploy: Deleving appHostOonfiy (sitemani fast/appHostContiy|eps
USHSDeploy: Adding to Package: (1 of §)archive.wml
USHSDeploy: Adding to Package: (2 of 6)Convent/D_C/Users/FUTLABE/T
USHSDeploy: Adding to Package: (3 of 6)Content/D_C/Users/FUTLABE/T
USHSDeploy: Adding to Package: (4 of 6)Convent/D_C/Users/FUTLABE/T
USHSDeploy: Adding to Package: (S of 6)Convent/D_C/Users/FUTLABE/T
USHSDeploy: hdding to Package: (8 of §)systenInfo.zml
USHSDeploy: Package is suscessfully creaved as single file ac DT
VEMEDeploy: To get the instructions on how to deploy the web packs
Target "CenerateSampleDeployScript” in project "WebApplicationd.cs
MSDeploy: Gemerate msdeploy.exe commandline for preview only.
MSDeploy: Gemerate msdeploy.exe commandline for preview only.
Done building project "WebApplicationd.csprod®
Build: 1 succesded or up-to-date, 0 failed, 0 skipped
Publish: 1 succeeded, 0 failed, 0 skipped

image102.png
Favorite Links
B Documents
B Picres
B Music
More »
Foldars v

PreCanfigureWeb6335622 +
VShacrostD

Nome

Uitog

0 PackageTmp
WebApplcations.deploy.cmd

2] Webapplicationd.Desthtanifestsanl
WebApplcation3 SourceManifestiml

WebApplication3zip

Date modified
9/13/2008 8:34 PM
9/13/2008 8:34 PM
9/13/2008 8:51PM
9/13/2008 8:51PM
9/13/2008 8:51PM
9/13/2008 8:51PM

Type Size
File Folder

File Folder

Windows Camrma

XML Dacument

XML Dacument
Compressed (zipp.

3K8
1K8
1K8
nke

Tags

image103.png
Search Everywhere

e ptemet

Control Panel
Defautt Programs

Help and Support

Windows Security

image104.png
€ Internet Information Services (IS) Manager
G O W S s S
File View Help

Connections

2 o Default ¥
VMXIB-VZ (REDMOND\FWTLABE)

2 Application Poals Sl i
@, FTP Sites e
@ Stes o
N
T Explore ZEXM
D ANCon{ it Permissions,
P Alcan
2 aspnet 2. AddApp;h(amn | e
D MyWel o Add Virtual Directory. JeType
A feType
P vR_and R JeType
D VRAIQ Manage Web Site) [stesss
P VRIntd atefiss
D vRaned ¥ Refresh atefiss
D VRIntd X Remove atefiss
i - jeation
P VR wel font

9 Webag [Switchto FeaturesView jon17p

image105.png
Add Application

Site name: Default Web Site

Path: /
Al Applicaton pot
Webappd DefauippPosl

Example: sales

Physical path

Diishal\WebApp3

Pass-thraugh authentication

Connect as Test Settings.

image106.png
Nome Datemodified Type

Sl Webtpplicationd.depl.. /13/2006 551PM Windows Cornma,
Webfpplication3 Dest.. YL3/2008 65LEM XML Dacument

Weblpplicaton3p YLV GSLAM Compresed Gipp

Favorite Links

1B Documents

More »

Folders -

WebApplication3.DestManifestxml Date modificd: 9/13/2008 8:51 PM
XML Document Size: 123 bytes
/13/2008.9:10 PM

Date created:

Size

3K8
1K8
nke

image107.png
Opyrat (<) 2006 Microsoft Corporation. ATl rights reserved.
\Users\FWTLABB{cd "D :\Progran Files\IL5\Wicrosoft web Deploy” |

s\Program Fi1es\IIS\Microsaft Web Deploy{"D:\Isers\FWTLABB\Desktop\DeployPekg WebAnp 11 cationd . deploy. cmd” /t)
executing msdeploy . exe with -nhatif
sdeploy . exe -source :package="D:\Jsers\FUTLABE\Desktop\DeployPcka\WebApp] fcationd. zip" ~dest imani Fest="0:\Users\FWTLABE\Desk]
pr\OcployPckg\ebappT 1 cat ond Destiantfest xml includeact tsync ~disableLink :ContentExtension ~disableLink
cateExtension ~whati
¢ Adding child dirPath (0:\Vishal\WebApp3\bin)

Adding child F11ePath (0:\Visha] \ebApp3\bimwebApp]ication3. d11)

Adding child FilePath (D:\Visha] \ebApp3\bimWebAppTications. pdb

Adding child FilePath (D:\Vishal\WebAppI\DeFault, aspx)
3 Adding child FilePath (0:\Vishal\WebApp3\Heb. cont1g)

ange count: 5

image108.png
opyright (c) 2006 Microsoft Corporation. A1l rights reserved.

\Users\FWTLABB{cd "D :\Progran Files\IL5\Wicrosoft web Deploy” |

s\Program Fi1es\IIS\Microsaft Web Deploy{"D:\Isers\FWTLABB\Desktop\DeployPekg WebAnp 11 cationd . deploy. cmd” /t)
executing msdeploy . exe with -nhatif

isileploy. exe -source :package="D:\Users\FWTLABE\Desktop\DeployPckg\webApp] i cation3 . zip" -dest imanifest="D:\Users\FATLABE\Deskt]
p\DeployPckai on3.Desthani fest ", includeAc]s=False -verbisync -disableLink:ContentExtension -disableLink:Certi]
i cateExtension

ction: Adding ch1ld dirPath (D:\Vishal\WebApp3\bin)

ction: Adding child FilePath (D:\Vishal\WebApp3\bin\webApp]ication3.d1)

ction: Adding child filePath (D:\Vishal\WebApp3\bin\Webapplication3.pdb)

ction: Adding child FilePath (D:\Vishal\WebApp3\Default.aspx)

ction: Adding child FilzPath (Di\Vishal \WebApps\eb. confa)
ange count: 5

Program Files\ITS\Hicrosoft Web Deploy>"D :\Users\FTLABB\Desktop\DeployPckg\iebapp i cation. deploy. cme

(msdeploy . exe -source :package="D:\Users\FWTLABE\Desktop\DeployPeka\WebApp] ication .zip" —dest imanifest
0p\Dep 1oy Peka\Webapp 11 cat ion3 .Desthanifest ", includeacis=False —verbisync -disableLinl
icateExtension

\Users\FWTLABE \Desk]
antentExtension —disableLink iCart]

T T TS (WEBRBE3 (BT
ction: Adding child £ilePath (D:\Vishal\WebApp3\binsebapp]ication3.dl1)
ction: Adding child FilePath (D:\Wishal\WebApp3\binHebApplication3. pdb)
ction: adding child FilePath (D:\Vishal\Webapp3\Default.aspx)

ction: Adding child FilePath (D:\Wishal\iebApp3\ieb. confia)

hange count: 5

\Program Fi1es\IIS\Hicrosoft Web Deploys.

image109.png
+| Internet Information Services (IIS) Manager

0[5+ Wove » Siws » oeoWe S s Webdos »

File View Help
Connections
4]

VN0 V2 (REDMONDVWTL
2 Applicstion Posls

" /WebApp3 Content

Go - (G Show Al | Group by: No Grauping

& FTP Stes Type
Stes Fil Folder

4 @ Default Web Site Defaultaspx ASPNET Server Page
Webhpp3 12 Web.config CONFIG File
EContentTypesil

image110.png
€ http:/flocalhost/WebApp3/Default aspx - Windows Internet Explorer

OO - [E mostectnossmeotmpataspe

Ve | @ htpiflocalhost/Webapp3/Defaultaspx

Visual Studio 10 Web Deployment Rocks !!

image111.png
7 Internet Information Services (IS) Manager
GO [0 i » 5w » o

File View Help

Connections

L]
495 VMX08-VZ (REDMOND\FWTLABE)
2 Application Pacls
@ FTP Sies
4731 Stes

4@ Default Wb Site
P aam
D BICantentTypesWAPTS
D BlICantentTypeWAPIS2
1 aspet_client
9 VR_AIContentTypes0305_15414
 VR_AICantentTypes0305_174202
 VR_AICantentTypes0308_022402
D VRntermedistefssembhDefaultdd
D VRIntermedistedssembhyDefaultdg
D VRIntermedistedssembhyDefaultdg
D VRIntermedistefssembhyDefaultdd
D VR Webipplication 0305174548
P Webpp3
9 Webapplicationl
 WebApplication1733
 WebApplication1783_deploy
9 Webapplication2
9 Webapplication3
 WebApplication3_deploy

image112.png
Intermet Information Services (IS) Manager

2 - ites » Defaul
Q) [+ Woarva + Sies + ok

File View Help

Connections

L]
495 VMX08-VZ (REDMOND\FWTLABE)
2 Application Pacls
@ FTP Sies
4751 Stes
@ Defaule Web Site
P aam
D BICantentTypesWAPTS
D BlICantentTypeWAPIS2
] aspret_client
D MyWebPagesStarterkit Netdd
D VR_AlContentTypes0305_15414
 VR_AICantentTypes0305_174202
 VR_AICantentTypes0308_022402
D VRntermedisteAssembhDefaultdd
D VRIntermedisteAssembhDefaultdd
D VRIntermedisteAssembhDefaultdd
D VRIntermedisteAssembhyDefaultdd
D VR Webipplication 0305174548
P Webpp3
9 Webapplicationl
 WebApplication1733
 WebApplication1783_deploy
9 Webapplication2
9 Webapplication3
 WebApplication3_deploy

image113.png
Intermet Information Services (IS) Manager

) [T > W00 > St s Do WAR S Ve SN

File View Help
Connections
2]

S5 VMX08-2 (REDMONDIFWTLAE)
2 Application Poals

" Default Document

Use this feature to specify the default ile(s) to returm when a client does not request a specifc il Se

@, FTP Sites
4.[3 Stes Loginaspx Local
Custom Default Document
@ Defoult Web Site Default htrn Inherited
D s Defaultasp Tnherited
P AllContentTypeswaPIS indechtr Inherted
P AllContentTypesWAPIS2 indechtml Inherited

B e s fisstarthtrn Inerited
fyWebPages Starterkit_ et
VR_AICantent Types0905_ 154148 defaultaspc Inherited

image114.emf

image115.png
1 i/ ocalhost/MyWebPages tarterct Netd) - Windows ntemet Explorer

I ———m" [e scarch 5 -

A
o &t | @ http/localhost/MyWebPagesStarterkit_Netdl [v % v [Page v (i Tools v

LOGIN SEARCH

> Home

Done G Localintranet | Proected Mod: On R10% -

image116.png
8 Login - Windows Intemet Explorer

T r————" [e scarch 5 -

A
Y & | @ Login B v B v @ v [Page v & Tools v

LOGIN SEARCH

Home

User Name

Passward

[Remember me next time

Change password

Done G Localintranet | Proected Mod: On R10% -

image117.png
Signing

s MSDeploy Settings

Package lterns

Code Analysis

image118.png
GO [0 W0 » St » DebltWeb St MpWebPagesSarer st

File View Help

3

Connections

495 VMX8-V2 (REDMOND\FWTLABE)
2 Applcation Pools
@ FTP Ses
45 Stes
4@ Default et S

3 AlContentTypesWAPS
- AlContentTypesWAPIS2

- VRAICantentTypes1305_174202

- VRLAIContentTypest90_022402

B VR IntermedisteBssermblyDefaultdd
P VR IntammedisteBsserblyDefault)d
B VR IntermedisteBsermblyDefault)d
P VR JntarmedisteBssernblyDefaultd
B VR Webipplication10305_174548
3 Webtipp3
3 Webhpplication
3 Webipplication17ey
3 Webhpplication17e3_deploy
(3 Webipplication?
3 Webhpplication3
3 Webipplicationd_deploy

" /MyWebPagesStarterKit_Net40 Home

Group by: Area

e
\J

< e L
wr e seveene

Compilation Globalization

&L &

Session State SMTP E-mail

&

AP Authentic,

s

E)

Authorizat
Rules

s @
e

=

(5,
NETRoles NETTrust .NETUsers Application Connection Machine Key Pages and
Levels Settings Strings Cantrols

@ 9 B E B &

6l Compresion| Detult | Dictory Erorpoges Faled Honder
Document | Browsing RequnitTro. Mappings

= M = 8

MIVETypes Modules Ouput S5 settings

Caching

@

Providers

g
aidl
HTTP

Redirect

Cl P—— v

[Features view | ContentView

Actions

Open Feature

B toioe

Edit Permissions.

5 st setns.

View Virtual Directories

Manage Ap

Browse Application
81 Browse %80 (http)

Advanced Settings,

@ rer

Online Help

< @G

image119.emf

image120.emf

image121.png
Favorite Links

B Documents
B Picres

B Music

More »
Folders

& items

0 PackageTmp

MyWebPages Starterkie,
MyWebPagesStarterki,
MyWebPagesStartrki,
11 MpWebPagesStartere

Date modified
9/14/2008 1:48 AM
9/14/2008 1:48 &AM
9/14/2008 1:49 AM
9/14/2008 1:48 &AM
9/14/2008 1:48 &AM
9/14/2008 1:49 AM

Type
File Folder

File Folder
Windows Camrma
XML Dacument
XML Dacument
Compressed (zipp.

image122.png
Favorite Links

1B Documents

More »

Folders

MyWebPages Starterkie
MyWebPagesStarterki,
11 MpWebPagesStartert

Date modified
9/13/2008 1157 PM
9/13/2008 1157 PM
9/13/2008 1157 PM

Type Size
Windows Camrma 3K8
XML Dacument 1K8
Compressed (zipp. 8,608 KB

image123.emf

image124.emf

image125.emf

image126.emf

image127.emf

image128.png
8 Login - Windows Intemet Explorer

N
W gt | @ Login

[hitpyocalhostivsio-starteriit/

X | Live Search

% v B v @ v [page v) Taols v

Home

Login

User Name: |

Passward

[Remember me next time

Change password

LOGIN SEARCH

Dane

G Localintranet | Protected Mode: On

R100% ~

image129.png
| MyWebPagesStarterkit Properties

General | Ofine Fies | Secuy | Previous Versions | Customize)

Myw/ebPagesStarerkit

Tope: File Folder
Location: Wwm01-41\D$\temp

Size: 236 MB (24761452 bytes)
Size ondisk: 29.8MB (31,313,920 bytes)

Contains: 2,463 Files, 314 Folders

Created: Thursday, September 11, 2008, 6:4224 PH

Atrbutes:

sy i apees o s i
bidden [Advorcea]

oK Cancel Apply

image130.emf

image131.emf

image132.emf

image133.png
0 DocumentWithNodesetHTML x| [Read Only] - Microsoft Visual Studio (Administrator)

File Edt View Project Debug XML Dats Tools Test Anshze Window Help
N1 N TR TN R = = N I -
Y=Y 20936386

;| ~ DocumentWithNodesetHTMLxsl| Start Page | X
o ol version=11.0" encoa > -
£ || <xsr:scyiesheer versson=ri.o®
£)| xmins:xs1=mheep: / /v w3 . 07g/1899/XSL / Trans formn
X103 S 1="UTn: SCHERES-IA GOS0t -comi KS1ET ><x31:0UTpuT mEChod="hTal"/>
PlesseWait = D
Outpt cEx

Please wait while XSLT Profiling is being executed.

Show outputfroms XML |

Depending on your nput e and complesity of XSLT fie,tis ay take few
minutes.

Successtuily insorme] VAN

arning USPZ013: Tnst

Di\Progran Files\Micr.
Enabling VSPerf Trace

e CLR header flags have

osofe Visusl Studio 10.0
)

Current Profiling Bnvs
COR_ENABLE_PROFILIN
COR_PROFILER=(09547427-FL19-4al t-ASE2-3DEGEEIZEFEO}
COR_LINE_PROFILING=0

COR_GC_PROFILING=0

Microsofe (R) USPerf Command Version 10.0.10317 x86
Copyright (C) Microsofe Corp. ALL rights reserved.

Warning:

‘Systen.Data.SqlXul' is not losded frow the Native Iuage Cache

Ln3 Col 43

That atfects accuracy of timing info

chay NS

image134.png
9 tmpaTSD.vsp - Microsoft Visual Studio (Administratar)
File

Edit View Data Tools

Test

Project Analyze Window Help

G4 [I I -}
 AmpO7SD.v3p | DocumentWithNodssetHTMLis1 | SartPage

Debug

%
9 +
g Current View: [Suramary e T
§ | Functon T —— Epaad nclusie Time %
CalTree
¥ Micrg Modules 100.00
¥ sl Caller / Callee me) 99.45
Foncions
¥ Function Details me) 9845
o ltme xniQueryRuntime.c s
Progess, —ecrasssyseerrmlXsl Runtime XmIQuery... 9187

Related Views: Call Tree Functions

Functions With Most Individual Work
Functians with the highest exclusive application times

Elapsed Exclusive Time %
o

o

m

050

o187

image135.png
9 tmpaTSD.vsp - Microsoft Visual Studio (Administratar)

Ele Edit View Project Debug Data Tools Test Anclyze Window Help

Edd 3 B B B
32|~ tmp975D.vsp | DacumentWithNodesetHTMLxsl | Start Page - x
E
E CurtentView: Surnmary B ERAaAY

Profiler Performance Report

Instrumentation Made: 17.54 millseconds of tatal elapsed time

Hot Path
The mast expensive call path based on execution times

Function Name Elapsed Inclusive Time % Elapsed Exclusive Time %

¥ Microsoft Xldebugger Host exe 100,00 000
¥ sltBrecute(class System XmlXsl Runtime XmIQueryRuntime) 9945 000
3 sltRoot(cless System Xl Xs| Runtime XemlQueryRuntime) 9945 00

¥ sl <sshapply-templates>(class System XmlXsl Runtime. XmiQueryRuntime.cl. a4 059

& it cxsttemplate mat

>(class System.Xml.XslRuntime XmIQuery... 9187 9187

Related Views: Call Tree Functions

Functions With Most Individual Work
Functians with the highest exclusive application times

Name Exclusive Time %

it <shternplate match=""»(class Systerm Xl XL Runtime Xem|QueryRuntime,class System XmlXPath XPath.. E—— 0137

st Rootl(class System Xml X5l Runtime XrmlQueryRuntime) = T

s, <xliapply-templates »(class System XmlXsl Runtime XimIQueryRuntime,class System XmlXPath XPathNav. I 0sy
sl.cetor) I 0ss

st Executel(closs System Xl Xs| Runtime XemlQueryRuntime) X

< v
Output “EX
Show autput from: XML g

Copyright (C) Microsofe Corp. ALL rights reserved.

Varning: 'Syscen Daca.Sqlxml’ is mot loadsd from the Navive Tnage Cache

That atfects accuracy of timing informavic

»
Ready

image136.png
File Edit View Project Debug

=

Data

Tools

At IR AR R =R =Y

Test Analze Window Help

MR- A Jec RSy =R

[xomtoss ¢

mpS75D.v+p | DocumentWithNodesetHTMLyl | SartPage - x

o CunentView: Functions L T

Function Name Elapsed Inclusive T... Elapsed Exclusive .. Application Inclusi... Application Exclusi.. Elapsed Inclusive .. Elapsed Exclusive .. Application Inclusi... Application Exclusi, Nurnber

tt.cetorg 010 010 s s 055 055 s s

sl clapply-termplatess (c 1621 010 [[2.4 05 364 364

sl <xltemplate match="/ 1611 1611 [[s187 s1e7 0 0

xslt.Execute(class System.Xrr 1744 0.00 0.00 0.00 99.45 0.00 10000 6354

xsltRoot(class SystemXrmlx 1744 13 0.00 0.00 99.45 700 36.46 0.00

< i .

Outpt cEx

Show output from XML Y=

Copyright (€1 Microsofs Corp. ALL rights reserved A
o

Varning: 'Systen.Data.Sql¥al’ is not loaded fron the Navive Tnage Cache. That affects accuracy of timing infornstion 1

TR B SRR e teeeion 10 e <o - .

Ready

image137.png
Bile Edit View Project Debug Data Tools Test Analyze

Window Help

T EH@ a9 A

MR- A Jec RSy =R

[xomtoss ¢

mpS75D.v+p | DocumentWithNodesetHTMLyl | SartPage - x
o CumentView: Caller / Callee 15 Bl e

Functions that called xslt..cctor()

Function Narme Elapsed Inclusive T Elapsed Exclusive .. Applicston Inclusi.. Application Bxcusi.. Elapsed Inclusive . Elapsed Exclusive .. Applicston Incusi.. Applicat
Top of Stack

Current function

salt.cctor) o o [[055 [[
Functions that were called by xslt..cctor()
[Bottam of Stack 1

T m v
Outpt TEx
Show output rom: XML Y=

Copyright (€ Hicresote Corp. ALL rights reserved. A

o

Varning: 'Systen.Data.SqlXal' is not loadsd fron the Navive Inage Cache. That affects accuracy of timing infornation. 1
s 12 Tabant Fommant Tareson 100 10217 <28 .

Ready

image1.png
Type here to search shal |5

= schema set
& {}urnibmljbrainml.orgiinternal/EraintL/2

& {} httpifjvan.i3.rg/ 199 xlink
B winkssd
5 { } hitpsffonvns.3.org/ XML/ 1898 namespace:
2wl
& {} urnibmljbrainl. orgiinternal/ErainMetal 1
2 brainmetalsd
3 ataion xcd

image138.png
05 trpTSD.vsp - Microsoft Visual Stu inistrator)

Ele Edit View Project Debug Data Tools Test Anclyze Window Help

=2 N IR RN R ==]

e MR- A Jec RSy =R

37| tmp975D.vsp | DocumentWithodesetHTMLysl | Start Page - x
E
£ || @ & cumentview: Modules L T
| P— Elapsed nclusive T Elapsed Exclusive .. Applicston Inclusi.. Application Bxcusi.. Elapsed Inclusive T Elapsed Exclusive .. Applicston Inclusi.. Applicat
= mpo75Cdil f 1754 1754 0.00 0.00 100.00 100.00 100.00
sl cctor) 010 01 o o 055 055 [
sl <xlsppy-tempt 1621 010 [[2.4 05 364
sl <xltamplate ma 1611 1611 [[s187 s1e7 0
sl Execute(elss Sys 144 [[[s o 10000
xsltRoot(class Systen 1744 13 0.00 0.00 99.45 700 36.46
< i .
Outpt TEX
Show output rom: XML AEIE-EYEY
Copyright (€) Microsoft Corp. ALL rights raserved A
O
Varning: ‘System.Data.Sqlial’ ir mot loaded from the Navive Tnage Cache. That affects aceuracy of timing inforsstion 0
Hiseacain (5 s Eommana veveion 161 20415 2t)

Ready

image139.png
9 trmpdTSD.vsp - Microsoft Visual ministrator)

E=gE=n |
File Edit View Project Debug Data Tools Test Anahze Window Help
MR A N TN AN SRR == YN 3 E e 2
|~ tmp975D.vsp | DocumentWithhodesetHThLacl | Start Page v x
E
2] e o curentview Marks L T
| MarkID Mark Name Trmestarmp
0 Start of Program 000
394567355 End of Program 3991
Outpt TEx

Show autput fram: XML

AL |x|E

Copyright (C) Microsofe Corp. ALL rights reserved.

Varning: 'Syscen Daca.Sqlxml’ is mot loadsd from the Navive Tnage Cache

Microsofe (R) USPerf Command Version 10.0.10317 %86
Copyright (C) Microsofe Corp. ALL rights reserved.

Shuceing down the Profile Monitor

That atfects sccuracy of ti

Ready

image140.png
9 tmp7SDusp - Microsoft Visual Studio (Administrator)
Ele Edit View Project Debug Data Tools Test Anclyze Window Help

S P69 2L - B B
3| tmpO75D.v5p | DosumentWitnNodesetHTMLs | SartPoge | - x
4
g « Current View: Modules RN NE e e AL %4
[ame ~ HopsedInclusive T, Elapsed Bclusve . Application nclusi_ Application Bxclusi._ Elpsednlu
= mpo75Cdil 1 1754 1754 000 000
ohcctord 010 010 o0 o0
ol <cstapply-temp 1621 010 o0 o0
ol <sttermplate ma 1611 611 o0 o0
sl Becuteclass ys o o o0 o0
xsltRoot(class Systen 1744 13 0.00 0.00
9 D
o cEx
Show output from; XL sl

Copyright (C) Microsofe Corp. ALL rights reserved. P

Warning: 'System.Data.Sql¥ml' is not loadsd from the Native Iuage Cache. That affects acewracy of €
Microsofe (R) USPerf Command Version 10.0.10317 %86
Copyright (C) Microsofe Corp. ALL rights reserved.

Shuceing down the Profile Monitor o

“ i »

Ready

image141.png
9 tmp7SDusp - Microsoft Visual Studio (Administrator)
Ele Edit View Project Debug Data Tools Test Anclyze Window Help

S P69 2L - B B
3| tmpO75D.v5p | DosumentWitnNodesetHTMLs | SartPoge | - x
4
2 || e = Cunentview: Process B A&
2| e D Neame BeginTime nd Time
El [l 1636 MicrosoftXsldebuggerHo 177.99 399.91
[1128 Unnomed thead et 20038
o cEx
Show output from; XL sl

Copyright (C) Microsofe Corp. ALL rights reserved.

Warning: 'System.Data.Sql¥ml' is not loadsd from the Native Iuage Cache. That affects acewracy of €
Microsofe (R) USPerf Command Version 10.0.10317 %86
Copyright (C) Microsofe Corp. ALL rights reserved.

Shuceing down the Profile Monitor

“ i »

Ready

image142.jpeg
Current View; Caller { Calles

AP IS

Functions that called xslt.<xsl:apply-templates> (2)(class Systel

Current view: Caller { Calles

e A= SR Y04

[Functions that called xslt.<xsl:apply-templates> (2)(class System

Funcion Name Elpsed Incusive Time | ... | Elapsed Incusve T Funcion Name Elpsed Incusive Time | ... | Elapsed Incusve T e
xslt.Root{class System.Xml.%sl.Runtime. XmiQueryRunt 135,99 0.18 95.76 [llxslt.Root(class System. xml.Xs|.Runtime. XmiQueryRunt 159,69 0.00 91.94
sk, <xsltemplate match="">(class System.Xml.xsl|.Ri 0.00 184 0.00 [k, <xsl:template matc ">{class System.Xml.xsl.Rt 0.00 0.00 0.00
sl <xsltemplate matct :wordDocument” >(class 0.00 001 0.00 [Jllxsl. <xsl:template match="jw:wordDocument” >(class. 0.00 0.01 0.00
Current function urrent function

sk, <xsl:apply-templates > (2)(class System.Xml.xsl.Ri 135.99 6.68 95.76 [l <xsl:apply-templates > (2)(class System.xml.xsl.Ri 159.69 031 91.94

Functions that were called by xslt.<xsl:apply-templates> (2)(cla

IFunctions that were called by xslt.<xsl:apply-templates> (2)(class

sl <xltemplate match="{">(class System Xl 45l 1 13581
sk, <xstemplate match="{u:mordDocument”>(class 12565
sk, <xsbtemplate match="n:bady">(class System.m 43
sk, <xstemplate match="w:p">(class System .5 360
sk, <xsltemplate match="w:t">(class System i sl 2401
sk, <xshtemplete makch="wifont">(class System.mi 955
sk, <xsbtemplate match="wstyle">(class System.Xm 7.9
sl prsRDefaul(class 5ystem . sl Runtime. XmiQue 0o
sl prsPDefault{class System. sl xs Runtine miQue: oo
sl SyncToNivigator(class System. sl xpath Pathiie 0w

e
2945
227
1022
2401
776
0o
0o
0o
om0

9563
X
4959
4479
1631
673
542
0o
0o
om0

ol <emplate mat
i <l template mat
i, <xitemplate mat
i, <l template mat
bt <l template mat

e Syt AL
JowordDocument”>(clss
ibody">(cess ystem.sm
i (el System. il xs
it (class System. ki<
ot <xttemplate match="wfont">(dass System. sl
ot <xtemplate match="wistyle">(clss System.xm
oystem. ki ¢ Runtine.kmiQueryRuntime. IsQameEe
oystem. ki ¢ Runtine kmiqueryemSeauence. Creal
oystem. ki ¢ Runtine kmiquerytiodesequence. crez
ystem. .o Runtine Descendantterator. Create(d
ystem. i o, Runtine il storageCanverter String
system il 4Path titavigator HoveToparent()

system i 4Pt ctiiavigatorget_HodeTypel)

system .15, Runtime Element Contentlteratr.Move

o183
558
5250
.60
14.49
572
450
034
0%
05t
0s7
0%
03
o1
0w

image143.png
VhW e
5 3] NorthwindDetaset

533* Customers

Customer ID

Company Neme =
Contact Hame. =
Contact Tile
Address

City
Region
Postal Code:
Country
Phone
Fax
= Orders
= Order Detals
Orders

dow1.xaml*

Window! xaml.cs* | Start Page.

image144.png
ow1xami* | indowd xaml.cs* | Start Page

VhW e
5 3] NorthwindDetaset
533* Customers

Customer ID
Company Name
Contact Name.

|

Address
vy Order 0 ——|
Regon L=
. Customer 0
Cauntry
Employes 0
Phane plor
Fax Ship Name:
Eis]or::: M|
=5 Order i Adéress:
Customer ID
Employes 1D ship Gty
Ship Name
Ship Address Ship Region
Ship Gy
Ship Postal Coce:
Ship Redon i Posal G
hipposal Code J—
Ship Courtry
ship via Ship Via:
Order Dat
Required Dote Order e
Shipped Date
Freght Requred Dote:
order Detals
Shipped Date:

* Order Detalls
Orders
a Freight:

image145.png
(Gl % &

5 3] NorthwindDetaset
533* Customers
Customer ID
Company Name
Contact Hame.

Address
ity
Region

Country
Phane
Fax

55 Orders

5 order D
Customer ID
Enployes 1D
Ship Name

Ship Adcress
stip City

Ship Region
Ship Postel Code.
Ship Country
stip i

Order Date
Required Date:
Stipped Date
Freight

* Order Detalls

5 orders

dow1.xaml*

Windowt xaml.cs* | Start Page

E

Order ID:
Customer ID:
Employes ID:
Ship Name:

Ship Address:
Ship Ciy:

Ship Region:

Ship postal Code:
Ship Country:
Ship Vie:

Order Date:
Required Date:
Shipped Date:

Freight:

Order 1D

Product 1D

Unit Price

Quantity

Discount

image2.png
Type here to search

= schema set
& {}umibmlbrainl.orgi
& [E)braimissd
= import-> http
< fimport-> um:
@ tmeestattr
@ tmestatrgro
% contributor-ty]

Show Namespaces
Show Schema Fies
Sort By Type

Sort By Name

% event_list_tra

% histogram v
%

%

%

protocol-type

Show Compostors (sequencechoice/all)

% experiment-type

% histogram_prebin_trace-type
% historam_raw_trace-type
% histogram_trace-type

tipe

piecenise_series_trace-type ¢
primary_contrbutor-type

% recording_site-type
% spike,_train_trace-type
@ subect or orepartion-tvoe

810 schema Explorer [Sscion Eplorer [Z s vien |

image146.png
Start Page | Modell.edmx * Window1.xaml* | window!.xaml.cs |

Customers

Customer 1D £

Contact_Hame
Contact_Tite
address

City

Region
Postal_Cods

Country
Phane

Fax
32 Orders

image147.png
Start Page | Modelt edmx * Window1.xaml* | windowt xam.cs |

Customers
Customer_ID

Company MName

Contact_tame

Cortact_Ttle @,
acdress
city 4
Region 2
Pastal_Code
Country %
i] st
Fax ¢
B s 5] | e e
=4 order 0 | s
5 4 stip
Enployee 1D » i
Ship_Hame. 4| ship Region:
Ship_ddvess »
Ship_Cy <4 ship Postal Code:
Ship_Region 2
Ship_Postal_Code 5| shie Country:
Ship_Courtry %
ship_via S e ve
Order_Date ¢
I | Order Date:
Requred_pate o Crter et
Shipped Date g
X equires Date:
Freight N
2 Ondor Detals | Shigped pate:
23° Order Detals »
4| Freight:

5 orders

image148.png
Start Page | Modell edmx * Window1.xaml* | indow! xaml.cs |

" Cutoners
Cusoner
Conpary Name
Contct e
Contat Tl

Address.
cty
Region OrderID_|_Product
B
Pastal_Code UnitPrice | Quentiy | Discount
Country
Phane Ship Name:
Fax
& 3 orders Ship Address:
=4 Order 0 .
Employes_ID ip Gity:
Ship_Name
! Ship Region:
Ship_Address PR
Shio_City <h
X ip Postal Coce:
Ship_Region
Ship_postal. Ship Courtey:
Ship_Courtry
Ship_Via ship Via:
Order_Date
Required_Date Order Date:
Shigped Date
i Reaquired Date
33* Order_Detals stipped pote:
5 orders it

image149.png
Installed products:
Windows Installer XML Version 3.0

image150.png
[Pt e e NET Framework

Vo o+ RS p T r——
WiX. 3 WiX Project

Database Projects T WiX Merge Module Project
it Sy 3| i proc

Other Project Types T Il Ca+ Custom Action Praiect

A project for creating a Wi-based Windows Installer MSl file

Name: InstallPackage
Location: DA E
Solution Neme: WixTutorial

Create directory for solution

image151.png
[Solution ‘WixTutorial' (1 project)
& @ InstallPackage

(2 References

2 Productwis

image3.png
experiment -ole

Items mtching ‘experiment’ (5 found) @] - -|x

T Schema set g
& {} urnibmljbrainml orgiinteral/eraintL/2
& 2 brainmixsd
2 import-> i . rg XML 1998 ramespace

= import-> urnsbmfbrainml.orgintemal rainMetal /1 =
@ timtestattr -
@jtimtestattrgroup
= % contributor-type
& B ocquence _
periment [0.1]

% cvent i ace e
% expenment-ype & b crment s
% histogram_prebin_trace-type

% historam_raw_trace-type

B @0 bk b tore G

image152.png
Project types: Templates: [

Vil Basic VisulStodioinstlled templte
Vil G2 & Windows Forms Appiicaton
Visual G {8 Class Library
. AASP.NET Web Application

M nncale Annlicstion

A project for creating an application with a Windows Forms user interface (NE

Name: HelloWorld

Location: DAWiTutorial

image153.png
o Forml [(& &S

Hello, world!

image154.png
Project Dependencies

Dependencies Build Order
Projects:
[instlPockage

Depends on:
[Helloworld

image155.png
InstallPackage

@ Please wait whie Windows configures InstalPackage.

image156.png
InstallPackage

@ Please wait whie Windows configures InstalPackage.

Gatherng required irfomation.

J [Cancel

image157.png
e

Project Directory
DiAInstallPackage\HelloWorld

Version

Source.

DiAInstallPackage\HelloWorlc

] v
-

image4.png
Schema Set Statistics:

XML schema documents
globa elements
global complextypes.

NEF o
Y

global simple types.

image158.png
[Selution TnstallPackage’
= @ HeloWorld

& Properties
& References
FormiLcs

@ Progumas
& T nsalPackage

& [References
-3 HelloWorld
3 Productwas

image5.png
Schema Set Quickstart:

‘Show ikely root elements
‘Show al global types
‘Show al lobal elements

image6.png
Global types in Schema set (36 fot

5 schema set
= {} umibmijbrainmi.orgiinternal/Braifadd highlighted nodes to design surfacs

= () brainmlxsd

= import-> bttt 3. 0rg/ XML 1938 ramespace
= import-> urnsbmfbrainml.orgintemal rainMetal /1 1
@ tmeestattr

@jtimtestattrgroup

5 % contributor-type

B sequence

B e
e

& et pron ace e
s e 1
& et bacetoe

% g vew e

e .
% . bt e

£
2150 Schema Explorer [E5olibon Exporer [Foss V|

image7.png
brainml.xsd [Design] | Start Page v X

[0@ recurdmg,sme—lypej [e unit-type J

[0@ cumnhumv—qypej [0@ subject_or Jrepamuun—«ypej (% emy,e\emenmypej

Ty BN pvpemrweryy SN ¢ poereey S ey

& view-type-full

% xy_viewype

.

[Q; msmgmm,premn,uaoe—«ypeJ [Q; x J,im:s*'ypej —{_05 dam,e\emennypej

image8.png
@3 persontype exinds enity_slementtpe A

@ i D

@ wmibase sanyuR

)
== o

o
2 B |% @ wmibae wenvur
R
3 @ dest xs:anyURI

HH < inials seiswing

53 E o m sssuing

% P8 o midde 0 ssstring

€ prelast [0.1] sting

< last sting

€ lneage (0.1 sting

©> email 011 sting

€> phone (0.1 sting

€ stiute 0.1 xssuing

<> homepage [0 xssuing

image9.png
Type here to search

seleslBs
References to person-type (3 found) |- -|x
<9vocab vocs =

el

janythingExt

& $auintessence-common-content
= [ctsbone

<] import-> hiifjsrenk.3.0rg/ 1999}k

< import-> bt 3.0rgiXML{ 1938 namespace
= linclude-> brainmetalxsd

(@) type-atiribute
@ ciaton_exemalype
4 ciabontype o1

< citation ciztion
€citation_external
<citatons

€ link_author = rk type

10 schema Explorer [E5cion Eploer [ZCssvien |

image10.png
~author.xml " brainml.xsd [Design] |* Start Page ad

<2xml version="1.0" encoding="ucf-8"2> I

) <author ia="ID1" xml:base="http://uril® xmlns="urn:bml/Praimal.org:internal/Brainiiecal/1m
<link Bttp://uril” pa:href="http://uril® pa:role="http://uril” dest="http://uril” xulns:pd="http://uve.u.o
<1ink xolibase="http://uriz” pd:href="http://uriz” pa:role='hetp://uriz” dest="http://uriz” xmlns:p4="http://usw.ul.o
<link ase="http://uri3” p4:href="http://uri3” pa:role="http://uri3” dest="htp://urii” xulns:pi="http://uve.ul.o

<imitialssinitialsi</initials>
<prelast>prelasti</prelast>
<last>lasti</last>
<lineage>lineagei</lineage>
<emailemaill</enail>
<phone>phone1</phone>
<imstitute>institutei</institutes
<homepage>homepage1</ honepage>
</author>

image11.png
public void LoadWorkflowInstancel(string sglTrackingConnectionString

« View Designer
// Load the specified workel

Refactor »
chis.workflowlonitorl.SqlTza sqlTracking
this.workflowMonitorl.LoadWg Organize Usings » owInstanceld) ;
Create Unit Tests...
// starc the timer for refre - lnitor
cthis.workflowMonitorl.Starti D
Surround With.
// Load the DinnerNow Workfl o

this.workflowMonitorl.LoadTn mmon\ DinnerNow

Find All References

/7 Initialize the trackbar ¥|%3 View Cal Hierarchy

this.trackBarl.Value = this.

Breakpoi

this.Text = "BowerShell Work
workflowInstanceld.Tosty

Run To Cursor

private void workflowMonitorl Wo
i

d(opject sende:

this.toolStripStatusiastRefs > |ezesnea: =
+ this.workflowdonitorl.LastRefreshed.ToLongTimeString (

image12.png
(3 Calls To LoadWorkfowinstance’
- (3 Calls From LoadWorkdowinstance'

image13.png
My Solution - @« [
4 % LoadWorklowlnstance(string, System Guid) (DinnerNow Management PS PSWoridlowMonitor) || Call Sites Location a
4 [Cals To Loadviorklownstance’ ‘wordiutloritor Loadviorkiowrstance(Server-DimnerNowDatabase=[Outirkfo.cs - (100, 29

PY" LoadWorkfowMonitor()

(3 Call To Loadv/orkfowMonitor
1 (3 Calls From LoadWorkdowMonitor
Calls From ‘Loadworkowinstance’

image14.png
Load\Workflowlnstance(string. System.Guid) (DinnerNow Management PS PSWorkflowMonitor)
4 5 Calls To Loadioroninstarce’

i ridiow)

o Cutare| Add As New Root

Go To Definition

(23 Calls From Loz
Find All References

Copy cal-C

image15.png
Calls To LoadWorkiowMonitor
() Search found noresuls
Cals From ‘LoadWorklowMlontor
@ Loadvlorkfowinstance(sting, System Guid) (DinnerNow Management PS, PSiordouMlonior)
@ PSwiorilowMonitor) (DinnerNow Management PS PSorkfowonior)
@ ShowDislog0) (System Windows Forms Form)
4 [Call To ShowDidlog’
9 LoadWorklowMoritor) (Dinnerhow Management PS Outiorkiow)
4 §% OnShowitalzaionizard) (Dinnerliow Management MMC DinnerNowSnapin)

" 3 CallsTo OnShowitalzationizard

4 [Calls From OnShowiniazationvizard’

1 25 Database (DinnerNow Management MMC ntorkowConnection)
 IntorionConnect
5 IsModified (Microsoft M
Server (Dinneow Man|
© ShowDislog() (System.\

B WorkfowdssemblyFoldel Find AllReferences.
1 £ Overrdes OnShowinialzat}
£ Cals From ShowDizlog’ Copy cul-C
= Workflowinstanceld (System Workflow. Runtme Tradking Sal radengWorkomtnstance)
om LoadWorkfowlnstance’

‘
; Py
: o ToDetion

image16.png
B Workflowlnstanceld (System Workflow. Runtime. Track
(3 Cals From Loadviorkovinstance’
.
1 3 Cell To nilorkfowConneciion
© B3 Calls From IitWorkfiowConnection’

image17.png
T —
My Solution - @« [

49 Loadviorkflowlnstance(siring, System Guid) (Dinnerllow Management PS PSV
“

Refresh jnnerhow Mansgement PS Outiloriow)
aritor
(D) Search found noresuts
& Calls From ‘LoadworkfowMoritor

image18.png
Call Hierarchy.

My Soluton e I
Curent Proect ridlownstance(stin
Current Document fowMonitor{) (Dinn

4 “ ShowDialog{) (System Wi
4[5 Calls To 'ShowDialog’

image19.png
Browse: All Components

<Search>

50 DinnerNow ManagementMMC
{30 DinnerNlow ManagementPS
54 DinnerNow.Management.PS
(5% GetDNEndPoint
% GetDNSenice
% GetWCFSenice
5% GetWFActityEvent
09 Base Types
% pSCmdlet
% GetWorkflowlnstance

‘u

Go To Definition
Find All References
View Call Hierarchy.
Copy

Show Public Members
Show Protected Members
Show Private Members
Show Other Members

image20.png
Cé# Dynamic

Tag
cat
GerAll

My Golden Boy.
Chioe & Me
Chioe & Me
Chioe & Jenny
shop cat
Killers

This one’s mine.

Love at first snuggl
Sleepy

Gah!

Gorram and Inara's
Inara with her best o,

image21.png
Pictur ind

Internet Explorer

[_[CIx]

Qf,e + [@ Cosiverightsoluton SiverightProjectbinpebug StartPage

= [x] e s

[2]]

B e G-

Gorram and Inara's “last” meal
C# Dynamic together.
e DDFic posted a photo:
JFon Wayne
Tag
cat i
Méion
Get Al Kokemel S
el i
My Golden Boy |+ Muncie 2
Chloe & Me ahors_ Rihond e
Chioe & Jenny Plinteld Y ranapolia 5 bis
shop cat a
Gllers 0 B 5 Haniton, %dl-m‘ We didn't know at the time that
s one’ i B ason| We'd eventually be suckered
| This one's mine... | loomington, OMMBS, T Cinbat into taking both of them! This
Love at first snugol Y, g was the day we took Gorram
Steepy & home, he and Inara were busy
X s 5 narfing kitten kibble from an old
Gant A e Strainer our friend was using to
Fooier < help feed them. They were born
aiona under her porch, litter to a
Inara with her best o I mother abandoned by her
D » Virtual Earth™ = Franklort humans.
i eterscn singto
flavascript: fpushin hover | o Internet | Protected Mode: Off H100% v

image22.png
Broject types: Templates: e Famenokss +| T[]

e s e

ks Satvoe

e e

Office (§search Oniine Tempiates...

D

oy

=

wer

Voaon
s s
oo
Cremone e
Terroer

e ot ot o (T P 41
e Tepe]]
Loton: s Documee VS 0P GHUemo.C5 5~ |

image23.png
[TestMethod]
public void DefaulthutomobileIsInitializedCorrectly()

i
Automobile myAuto = new Auromobilel():

image24.png
<TestMethod()> Public Sub DefaultZutomobileIsInitializedCorrectly()
Dim myAuto As New Aucomobile ()
£nd Sub

image25.png
[Testiethod]

public void DefaultAutomobi
B [The type or namespace name ‘Automobile' could not be found (are you

Automobile myAuto = new Automobile ()]

image26.png
<Testlethod()> Public Sub DefaulthutomobileIsInitializedCorrectly()
Dim myAuto As New Aucomobile ()
£nd Sub

Type ‘Automobile' is not defined.
| Class

Change 'Automobile' to AutomobileTest'

Generate 'Class Automobile’

Generate other,

image27.png
Jpe Kin Type name:

Broject location:

GFUDemo_VB. -

File name:
© Create newfile
Automobilevb.

© Add to existing fle

o

image28.png
[Testietnod]
public void DefaultAutomobilelsInitializedCorrectly()
i [GFUDemo_CS.Automobile' does not contain a definition for ‘Model and no extension member ‘Model accepting a first argument of type.
| 6FUDemo_CS Automobile’ could be found (are you missing a using directive or an assembly reference?)

1

Automobile myAuto =
Zsserc.IsTrue (myhuto.

"Not specified” && myAuto.TopSpeed

? Generste propery stub for Model in ‘GFUDemo_CS Automabie |

image29.png
<TestlMethod()> Public Sub DefaultAutomobilelsInitial:
[TopSpecd is not a member of ‘GFUDemo_VB.Automobile']

Dim myAuto As New Aucomobile ()

Asserc.IsTrue (myAuso.Model = "Not specified” And Wg;ag‘i =1
E

End Sub “TopSpeed is not amember of
*GFUDemo_VB.Automobile'.

Generate method stub for TopSpeed in
‘GFUDemo,_VB.Automobile'

Generate property stub for TopSpeed in
‘GFUDemo > bile'
Apply Fix

I Class

image30.png
=y @VLMOL73161 2008-08-0 -
@ Testrunfailed Results:0/2 passed; Item(s) checked: 2

Run ~ b4 Debug ~ Il 3 | Group By: [None]

Result Test Name Project
©10 DefaultAutomobilesnitializedCorrectly TestProject!
©a0 AutomobileWithModelNameCanStart TestProjectl Test method TestProjectl UnifTestl AutomobileWit

image31.png
St

“%AutomobileWithModelNameCanStart)

image32.png
EETle ©VLMOLT3161 208-09:0 + | % Rum « KB Debug + 1 4 | H o - % 3 | Group By: (Nonel
@ Testrun completed Results: 2/2 passed; ltem(s) checked: 0

Resl TestNome Pt ErorMessoge
1@ Passed DefaultAutomobilelsnitiaizedCorrectly TestProject!

1@ Pased AutomobileWithModelNameCanStart TestProjectl

image33.png
Documentt - Microsoft Word

calibri Body

-ﬂ-u-w-[

345

Microsaft Office
ExcelVrkcheat |

1
2
=0
| 4|
|-
|6 !
| 7|
I
|

image34.png
[offcewalkthvough 4
54 Py roject o
- [References

3 Mirosoft, Ofice.Inerop Excel

3 Mctosof, Ofice Interop. Ward

i soluton Explorer [Team Explorer

- x

) Wierasoft Office Interop Excl
Copy Lacal Fale

Culure

Description

File Type
Idertty
Path

image35.png
= 3 Microsoft Yisual Studio 10.0

5 pplication

(& Commen?

& oBPro

[STtE

22 ImportProjects

55 Microsoft Visusl Studio Team System v10.0 Team Su
(52 Reportviewer

=) Samples.

15 pemo

{53 Managedpemo
& D PeopleTrax
(=Y

image36.png

image37.png
Joet
Getinstance)
9 GeiNames(System Resources ResourceManager, string)
9GetPeople(in)
 GetPeopleButon
9 GetPeopleButton_Click(obiect, System EventArgs)

image38.png
[oetramel
¥ GetNames(System. Resources. ResourceManager, string)

image39.png
Project Target Framework Not Installed =)

“The VB project "WindowsApplicationl. s targeting ".NET Framework 3.5", which is
notinstalled on this machine. You must download this framework, as well as .NET

Framework 3.5, in order to open and build this project. In order to proceed, you
must select an option below,

Retarget the project to NET Framework 4.0
Take me to the Framework Download Web Site

© Leave the project as unloaded

7100 not ssk me agsin during this operation

image40.emf

image41.emf

image42.emf

image43.emf

image44.emf

image45.emf

image46.emf

image47.emf

image48.emf

image49.emf

image50.png
 MatMult2080920.vsp | Start Page | - x

@ = CurrentView: CPU Utiization C B A SR

Core Utiization/ Concurrency View

§§§

-
-
-
. Mathult2 (PID=6572)

Number of Cores

1092701049926 1001.09270104963 2001.08270104983 3001.09270104983 4001.09270104983
Time (ms)

Average Run Time 1836917
Average Ide Time 1712532
Average Kemel Tir 0006714
Average Interferen 0443836

[T Greyscale Colors

image51.png
MatMult2080920.vsp | Start Page

@ = CurrentView: CPU Utiization C B A SR

Core Utiization/ Concurrency View

'

idle
Mathult2 (PID=6572)

Number of Cores

1092701049926 1001.09270104963 2001.08270104983 3001.09270104983 4001.09270104983
Time (ms)

Average Run Time 1836917
Average Ide Time 1712532
Average Kemel Tir 0006714
Average Interferen 0443836

[T Greyscsle Colors

image52.png
MatMult080920.vsp | MatMult2080920.vsp | Start Page - x
4= = Current View: Thread Blocking AT T
Blocking Reasons

_ Measurement Only Zoom

‘Seconds 1 2 s s s s 7 . s) n = =

paaal ol L L L b da g Lo by o il

S () T |

Unknown 6488 -

Unknown:1620

Unknown:7288

Unknown:7052

Excaition Breakdonn

Exeoution Stts | Disk 10 Fide Timeline Channel

10000 Vindows Messages
——] LPCslnterrupts

8000 - Precmpied/Quantum Expired
_ - emory Mansgement
Z 6000, SlesporYield
3 - Suspended
£ a0 10
= - ernel Synch

2000 . FuntimeLibrary Synch

- - eer S
0 Execution

1620
Thread ID

image53.png
MatMult080920.vsp | MatMult2080920.vsp | Start Page - x

Curent View: Thread Blocking T

Blocking Ressons

Lo EEee ==

Seconds : s s s 7 . s) n 2 5

el ML NIPVEPY BEPET BT BT ERREY ERRP ERres|
R e (1| | | m o

e e —
eI E—

e [T b RB 10| —
e I

Disk IO Stats | User Synchroization | Other Blocking Reasons | Hide Timeline Channel
Thread ID File Na

Number of Read:

image54.png
MatMult080920.vsp | MatMult2080920.vsp | Start Page

Current View: Core Execution BN

:

‘Core 0
Core'1
Core2
Core3

image55.png
MatMult080920.vsp

Current View:

‘Core 0
Core'1
Core2
Core3

MatMult2080920.vsp | Start Page

Core Bxecution

Measurement Only

image56.png
MatMult080920.vsp ” MatMult2080920.vsp | Start Page

e CumentView: Core Execution AT T

_ Measurement Only Zoom

Ly .

' g ENEEEEEEEEEENEWEEN'WWE
Gt EE NN NN NN EEEEEEEEEE N
G2

— | IEE NN EEEENENEENEENDEENNHRN

image57.png
MatMult080920.vsp ” MatMult2080920.vsp | Start Page

@ > Current View: Core Execution C B E SRR

image58.png
@ = Current View: Thread Blocking e e 4

Solution ‘Solutiont (0
Blocking Reasons. =

Messiariant Only Ze6i
100 Millseconds

e | | |
U172

. EEE. S S S —
B B
e T s e
S " S . .
S S S . .

Unknown:3744 seThreadlnitThunkthread.c:66

Ueon SO R N e | ek

MatMuit2.exelwmainimatmult2.cppi148
‘ kemel32.dllWaitForMultipleObjectsisynch.c1671

Startirt
Start:

Exccution Breakdown | Execution Siats | Disk /O Stas | User Synchronization | Ofher Blocking Reasons | Fide Timeline Chiannel | | 1, — 246905 ms

Thread Execution Blocking Reason Breakdown

2500

1 Viindows Messages
2000
1500
10004

Time (ms]

cQsoluti.. [Tea

Properties

image59.png
visual Studio Conversion Wizard

Welcome to the Visual Studio
Conversion Wizard

The soluon or project you are opering was crested i a previous
version of Visual Studio, 1t must be converted to the format used by
this version, After a soluion or any of ts projects has been
converted, t may o longer be possible to edit, buid, or runin
previous versions.

I the salution o project i under saurce contral it willbe checked
out automatically during the conversion. Be sure the correct Source

Control Plugein is active, and no files are exclusively checked out by
cther users

Clck et to proceed.

PP e | e | =

/)

image60.png
visual Studio Conversion Wizard [21x]
Choose Whether To Create a Backup
I you wank & copy of your soltion or profect in s curret format, it must be backed
r
D0 you want to create a backup before converting?
C o

& Yes, create & backup before converting

Location for backup:

o:AUserstbradiebivisusl Stusio 101ProjectsiSalutont] Browse,

el e | e =

/)

image61.png
visual Studio Conversion Wizard [21x]

Ready to Convert
Review the follwing summary information. Clck Finish o convert your soltion or
project.

Summary:

T the soluton or project s Under source control, i wil be checked out automaticaly during
the conversian, Be sure the correct Source Contral Pug In s active, and no s are.
exclusively checked out by other users

The Uparade Wrzard uparades projects that target the NET Compact Framevork 1.0 to
target the NET Compact Framework 2.0

NET Compact Framework 2.0 applications wil remain unchanged.

5QL Server Moblle 3.0 and SQL Server Compact Editon 3.1 references wil be upgraded to
5QL Server Compact 3.5 references,

‘Addtionally, managed Smartphone 2003 projects are Upgraded to target Windows Moble.
50,

Conversion type: In-place with backup to user specfied ocation
Backup location For projects: Di\Users|bradleybitisual studio 10{projects|Solutiont|

<orovos |_ o> |] ol |

/)

image62.png
[eb Site targeting older .Net Framework Found

The Web site D,..{MyWeb' Is configured to run on an older version of the NET
A Franework

For this Community Technology Preview Relesse of isual Studio, targeting
Frameworks 2.0, 3.0, and 3.5 may result n eatures not working as expected. Do you
want to upgrade the Wb st to use the .NET Framework version 4.07 (You can
change the target version later by usig the Project Propertis dialog bor.)

9" Dothe same for all Webs targeting an older .NET framework n this solution

Ve "

image63.png
References
Buld
Accessibilty
Start Options
MsBuild Options

Projects\Solution1\MyWeb\ Property Pages

Start acton (F5)

Before runming startup page:
Euid web site -

Target Framework

NET Framework 4.0 -

NET Framemwork 2.0
NET Framework 3.0

Buil

NET Framework 4.0

Accessibilty validation

I~ Include accessiiity validation when buiking page

I~ nclude accessiiity vaidation when buiing web

= | =2

image64.png
For i Commuty Techrcloy Preview Rl o Ve S,
U targeting Framemarks 2.0, 3.0, ond 3.5 may resul infasturcs nok

oG 21 AP e o sre o mark o change te rget
amowerts

image65.png
Target Framework Change

For this Community Technology Preview Release of isual studio,
targeting Frameworks 2.0, 3.0, and 3.5 may result n features not
working a5 expeted.

Changing the Target Framework requires that the current project
be closed and then reapened.

‘any unsaved changes within the project wil be automatically
saved.

Are you sure you want to change the Target Framework For s
project?

Ve 5

image66.png
50 <bodr>

B <torm ig=rformi® runac="serverns
10] 4

P </l

12 | </pody o s

13 be/meml @ sccesscatasorce

11 €2 scromym

<3, achess

i ccessDatasou

image67.png

image68.png

image69.png
<3

image70.png
T e
7 L </nean>

ot woay>

of) <form ta=rforniv runacerservern>
10] <aspiButton ID="Buctoni Text
nE </zeme

12 |</body>
13 L</nenl>
19

image71.png
T e
7 L </nean>

ot woay>

of) <form ta=rforniv runacerservern>

10] <aspiButton ID="Buttonl” Text=Ttext” runa
nE </zeme

12 |</body>
13 L</nenl>
19

image72.png
50 <bodr>
s <form id="forml” runat:
10 <asp:Button ID="Buttoni” Text=rtext” runa

server™s

11 [Tnsert Snippet
2 </orm>
13 | </body>

12 L </on1>

15

image73.png
<asp:Button ID="Buttoni” Text-rtext” runa

server” />

[insert Snippet: ASP.NET >

</form>
</body>
</henl>

Formr
hyperik
image
label
listhax
listtem,

[Farkup srippet for a checkbox control

JShartzut: checkbox.

image74.png
Code Snippets Manager [z1x]

Location;
CiProgram Fiesiicrosoft Visual tudo 10.0WeblsrippetslHTML L0331A5P.NETicheckbor snippet

iy ASPET <] Description
B Markup srippet for a checkbox control

formr Shartcut

hyperck. checkbor

SnippetTypes
Expansion

Author
Mirosoft Corporation

loginstatus
loginven
mulivien

add, Rerove

inport.._|_search onkne &=

